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The increasing demand for innovation in technology sectors necessitates a deeper
understanding of the factors that foster adaptability among students in specialized
fields like embedded systems entrepreneurship. This study provides a comparative
performance analysis of two prominent machine learning algorithms—Logistic
Regression and Random Forest—for predicting student adaptability levels (Low,
Medium, and High). Utilizing a dataset comprising academic, experiential, and
psychometric features, this research addresses the critical challenge of identifying
student potential in a data-driven manner. The methodology employed a stratified
data split and the Synthetic Minority Over-sampling Technique (SMOTE) to mitigate
the severe class imbalance inherent in the dataset, followed by a rigorous
hyperparameter tuning process for both models. The results revealed a nuanced
outcome. While the linear Logistic Regression model achieved a superior overall
accuracy (98.4%) compared to the more complex Random Forest model (87.2%),
both algorithms completely failed to identify any instances of the 'High' adaptability
class. This critical failure underscores the limitations of standard classification
techniques when faced with extremely rare positive instances. Furthermore, a feature
importance analysis conducted with the Random Forest model indicated that practical
skills, such as innovation and model deployment scores, were the most significant
predictors of adaptability, whereas traditional academic metrics like GPA had
negligible influence. This study concludes that while Al-driven models show
significant promise as an early-warning system to identify students who may require
additional support, they are currently unsuitable for talent identification due to data
limitations. The findings strongly advocate for a pedagogical shift in technical
entrepreneurship education, emphasizing the need to prioritize experiential learning
and practical skill development over conventional academic measures to cultivate the
next generation of adaptable innovators.
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Artificial Intelligence in Learning

engagement and development.

Recent literature highlights the application of Artificial Intelligence (Al) as a
transformative tool in educational settings. Al-driven models can facilitate
personalized learning experiences, enabling curricula that respond to individual
student needs and potentials. Chan and Zary discuss how Al can enhance
adaptive assessments, allowing the selection of subsequent questions based
on previous student responses, which underscores the technology’s capability
to inform and optimize learning paths [1]. This technological leverage is
particularly crucial in embedded systems education, where diverse learning
styles and paces can create disparities in understanding complex concepts [2].
Additionally, predictive analytics can assist in developing early warning systems
for academic performance, allowing educators to intervene proactively and
guide students effectively [3].

The integration of Al in educational frameworks could support curriculum
development specifically tailored for embedded systems and entrepreneurship.
By harnessing Al's predictive capabilities, educators can create a responsive
learning environment that accommodates different learning trajectories, leading
to improved student outcomes [4]. For instance, Jiao et al demonstrate how Al
models in online engineering education can accurately predict student
performance, identifying areas in need of attention or improvement [3]. This
predictive modeling is essential for fostering entrepreneurial readiness, allowing
institutions to align educational outcomes with industry requirements.

Moreover, the challenges associated with operationalizing Al in education,
particularly regarding data identification and bias in algorithms, present
significant considerations that must be addressed. Fahimirad and Kotamjani
explore the complexities of integrating Al within teaching and learning contexts,
emphasizing the need for careful implementation to avoid exacerbating
inequalities [5]. Therefore, a focused approach to faculty training and resource
allocation becomes imperative to ensure that both educators and students
benefit from these technological advancements.

The potential of Al-driven predictive modeling to enhance student adaptability in
embedded systems entrepreneurship presents a compelling avenue for
research and curriculum reform. By integrating Al technologies into educational
practices, institutions can better prepare students for the entrepreneurial
challenges they will face in their professional careers. The successful
deployment of these models not only stands to benefit individual student
learning experiences but also contributes to scalable improvements in
educational effectiveness across the board.

The primary objective of this study is to evaluate and compare the performance
of two supervised machine learning models—Logistic Regression and Random
Forest—in predicting student adaptability levels within the context of embedded
systems entrepreneurship education. This research seeks to determine which
model offers a more robust framework for identifying students who may require
additional support to cultivate their adaptive capabilities. To achieve this, the
study will first investigate how accurately a Logistic Regression model can
predict adaptability levels, followed by a similar evaluation of a Random Forest
model. Subsequently, the research will conduct a comparative analysis of the
two models based on their predictive performance, specifically concerning
accuracy, precision, recall, F1-score, and Area Under the Curve (AUC) metrics.
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This study is specifically delimited to the analysis of the Students’ Industrial
Engagement and Readiness Dataset (SIERD), and its findings are therefore
contingent on the variables and population represented therein. The research
focuses exclusively on Logistic Regression and Random Forest, with other
machine learning algorithms falling outside the scope of this investigation, and
the definition of "adaptability" is based on the constructs provided within the
dataset.

Literature Review
Student Adaptability in Education

Student adaptability is increasingly recognized as a crucial competency in
educational settings, particularly within the realms of Science, Technology,
Engineering, and Mathematics (STEM) and entrepreneurship. Conceptually,
adaptability encompasses cognitive, behavioral, and affective dimensions that
influence how students respond to changing environments and challenges.
According to Dewani and Nuzulia, students exposed to structured career
education demonstrate higher career adaptability, suggesting that institutional
support can enhance students' ability to navigate fluctuating academic and
professional landscapes [6]. Influencing factors such as social support,
emotional well-being, and prior experiences significantly shape adaptability,
impacting students' capacity to engage and excel in demanding fields [7].

The importance of adaptability extends to entrepreneurship education, where
students must integrate theoretical knowledge with practical applications,
particularly in complex fields like embedded systems entrepreneurship.
Embedded systems require a convergence of hardware and software
knowledge and the ability to prototype rapidly and validate market needs [8].
This presents unique challenges that necessitate a strong foundation in
adaptability, enabling students to maneuver through uncertainties effectively [9].
By fostering project-based learning environments and encouraging industry
engagement, educational frameworks can enhance the technical skills and
entrepreneurial capabilities of students within these domains, such as skills
related to Raspberry Pi and deep learning model deployment [10].

Entrepreneurship Education in Technical Domains

Entrepreneurship education in technical fields like embedded systems
comprises various pedagogical approaches that prioritize hands-on learning and
interdisciplinary collaboration. Teaching strategies must integrate not just
technical competencies but also nurture soft skills, which are increasingly
acknowledged as critical for entrepreneurial success. Kormakova et al
emphasize that the STEM approach, which focuses on real-world problem-
solving, can effectively enhance students' critical thinking and creativity [11],
which are vital in entrepreneurial ventures [12]. Furthermore, Wu et al explore
how teacher readiness significantly influences the effectiveness of STEM
implementation, positing that teacher self-efficacy can catalyze student
engagement and interest in STEM careers [13].

However, embedded systems entrepreneurship often faces specific challenges
such as effective hardware-software integration, market validation, and rapid
prototyping. According to Raki¢evi¢ et al, providing students with robust
entrepreneurial education can significantly impact their preparedness to tackle
these challenges, emphasizing the interplay between technical knowledge and
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entrepreneurial mindset [8]. Engaging students with real-world projects not only
solidifies their technical skills but also enhances their ability to innovate within
rapidly changing environments.

Machine Learning in Educational Data Mining (EDM) and Al in
Learning

Machine Learning (ML) applications in education are increasingly being
recognized as powerful tools for enhancing educational outcomes, particularly
in the areas of predicting student performance, dropout rates, and learning
styles. These applications allow educational institutions to harness the potential
of data-driven insights to improve student success. By integrating ML, educators
can analyze vast datasets to identify patterns and trends that can inform
intervention strategies, create tailored learning experiences, and ultimately
enhance the overall educational experience for students [14]. For instance, prior
research has highlighted the effectiveness of methods such as Logistic
Regression and Random Forest in predicting academic outcomes across
various educational contexts [14], [15]. These methods have been shown to
provide valuable insights that can guide educational institutions in making
informed decisions to support student learning and success.

As more institutions adopt these technologies, they can leverage the insights
gained from predictive modeling to provide timely support that is tailored to the
specific needs of each student. This personalized approach not only enhances
adaptability but also improves performance in higher education settings [16]. By
utilizing ML, educators can better understand the unique needs and challenges
faced by each student, allowing them to provide more effective and targeted
support. However, despite these advancements, there are still challenges that
need to be addressed. One significant challenge is the accurate quantification
of soft skills and behavioral traits, such as adaptability and innovation, which are
crucial in entrepreneurship. These skills are often difficult to measure and
quantify, making it challenging to incorporate them into predictive models.

Existing studies do not sufficiently address these complexities, as highlighted in
the gap analysis conducted by Chen et al [17]. This analysis points to the need
for more comparative research that utilizes robust datasets to predict
adaptability in embedded systems entrepreneurship. By conducting such
research, educators and policymakers can gain a better understanding of how
to foster these essential skills in students, ultimately preparing them for success
in both academic and entrepreneurial endeavors. In conclusion, while ML offers
significant potential for improving educational outcomes, there is still a need for
further research and development to fully realize its benefits, particularly in the
area of predicting and enhancing adaptability and innovation.

Predictive Modeling for Soft Skills and Behavioral Traits

The endeavor to quantify and predict soft skills like adaptability presents
significant challenges in educational research. While methodologies exist that
have successfully utilized ML for quantifying various academic traits, the specific
contextual application to traits such as adaptability remains underexplored [18].
Identifying suitable dataset features that encapsulate the multifaceted nature of
adaptability is critical for developing effective predictive models [17]. Therefore,
developing robust predictive techniques for soft skills is essential for enhancing
students' readiness for entrepreneurial roles, especially in technical domains
like embedded systems.
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In sum, the literature indicates that fostering student adaptability in tech-centric
entrepreneurship education requires a multifaceted approach. This includes
establishing supportive educational frameworks, deploying effective
pedagogical strategies, and integrating advanced predictive technologies. The
existing gaps in predictive modeling for psychological traits such as adaptability
underline the need for further research, suggesting that future studies could
provide critical insights into enhancing student preparedness for the
complexities of modern entrepreneurial landscapes.

Method

This section provides a detailed exposition of the research methodology,
encompassing the dataset characteristics, the multi-stage data preprocessing
pipeline, the architecture and theoretical underpinnings of the selected machine
learning models, and the rigorous framework for hyperparameter optimization
and performance evaluation. The entire experimental workflow was
programmatically executed in a Python environment, utilizing high-level libraries
including Scikit-learn for modeling, Pandas for data manipulation, and
Imbalanced-learn for handling class distribution anomalies.

Dataset and Initial Preparation

The foundation of this research is Student Entrepreneurship dataset, a
specialized collection of student-centric attributes designed to capture the
multifaceted nature of entrepreneurial potential in a technical domain. The
primary analytical goal is the prediction of the Adaptability Label, a multi-class
ordinal target variable with three logically sequenced levels: Low (encoded as
0), Medium (1), and High (2). While the models in this study treat the variable
as categorical, its ordinal nature implies an inherent order, a characteristic that
adds valuable context to the interpretation of classification errors. The feature
space is heterogeneous, comprising a mix of academic performance indicators
(Academic_GPA), experiential metrics (Project_Count, Industry_Collaboration),
and psychometric constructs (Innovation_Score, Self_Efficacy_Score).

The initial data preparation phase involved the programmatic exclusion of the
Student_ID feature. This column, being a high-cardinality, arbitrary identifier,
possesses no intrinsic or generalizable predictive information. Its inclusion
would introduce severe methodological flaws; a model could simply memorize
the outcome for each unique ID, leading to near-perfect performance on the
training data. This phenomenon, a form of extreme overfitting, results from the
model learning spurious correlations that are not present in the underlying
population, rendering it completely ineffective at making predictions on new,
unseen data. Removing such identifier columns is a fundamental and non-
negotiable step in building a valid and generalizable predictive model.

Data Preprocessing and Feature Engineering

Following initial preparation, the preprocessed dataset was partitioned into a
training set and a hold-out test set using a 75/25 ratio. This is a conventional
and empirically validated split that balances the competing needs of providing
the models with a substantial majority of the data for robust parameter learning,
while reserving a sufficiently large, independent set for an unbiased final
evaluation of the models' generalization capabilities. To preserve the a priori
class probabilities of the Adaptability Label in both subsets, a stratified
sampling strategy was implemented. This technique ensures that the relative
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proportions of the low, medium, and high adaptability classes are maintained
across both the training and testing partitions, a critical step that prevents
sampling bias and guarantees that the test set provides a faithful representation
of the original dataset's distribution. For the purpose of experimental
reproducibility, the pseudo-random number generator was seeded with a
constant value of 42, ensuring that the exact same data split can be recreated
in future analyses.

A key challenge identified during exploratory data analysis was a notable class
imbalance within the training data, a common issue in real-world datasets where
certain outcomes are naturally rarer than others. To rectify this and prevent the
learning algorithms from developing a predictive bias towards the majority class,
the SMOTE was employed. SMOTE operates in the feature space by creating
synthetic instances of the minority classes. For each minority class sample, it
identifies its k-nearest minority-class neighbors and generates new samples
along the line segments joining the sample and its chosen neighbors. This
procedure, unlike simple random over-sampling, creates more varied and
robust decision boundaries. Crucially, this over-sampling was applied only to
the training partition after the train-test split to avoid data leakage, a critical
methodological error where information from the test set contaminates the
training process, leading to artificially inflated and invalid performance
estimates.

Subsequent to resampling, all predictor variables underwent feature scaling via
the StandardScaler. This transformation standardizes each feature by applying
the z-score normalization formula, (x - y) / G, where J is the mean and ¢ is the
standard deviation of the feature in the training data. This process results in a
distribution with a mean of zero and a standard deviation of one. This step is
essential for algorithms like Logistic Regression, whose gradient-based
optimization process can converge much faster and more reliably on
standardized features. It also prevents features with larger magnitudes and
variances from disproportionately influencing the model's parameter
optimization. The scaler was fitted exclusively on the resampled training data,
and the identical, learned transformation (using the same y and o values) was
subsequently applied to the test data to ensure methodological consistency.

Machine Learning Models and Hyperparameter Tuning

Two distinct, yet powerful, classification algorithms were selected for this
comparative analysis: Multinomial Logistic Regression and the Random Forest
Classifier, representing linear and non-linear modeling paradigms, respectively.

Logistic Regression was implemented as a robust, interpretable linear baseline.
Given the three-level target variable, a multinomial (or Softmax) configuration
was used. This approach generalizes binary logistic regression by employing
the Softmax function to calculate a vector of probabilities, one for each class,
which collectively sum to one. The model was optimized using the 'Ibfgs' solver,
an efficient quasi-Newton method well-suited for this problem. To mitigate
overfiting and improve generalization, L2 regularization (Ridge) was
incorporated. This technique adds a penalty term to the cost function that is
proportional to the square of the magnitude of the model's coefficients,
effectively discouraging overly complex models with large coefficients that might
be fitting to noise in the training data.

The Random Forest Classifier was selected as a more complex, non-linear
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model renowned for its high accuracy and robustness. It is an ensemble
learning method that operates by constructing a large number of individual
decision trees at training time. Its predictive power stems from two key principles
that combat the high variance and overfitting tendencies of single decision trees:
bootstrap aggregating (bagging), where each tree is trained on a different
random subsample of the data drawn with replacement, and feature
randomness, where each split in a tree is determined from a random subset of
the total features. This dual-randomization strategy effectively decorrelates the
individual trees. The final prediction is made by aggregating the votes from all
trees in the forest (majority vote), which significantly reduces the variance of the
final model compared to its individual components.

To determine the optimal architecture for each model, an exhaustive Grid
Search with 5-fold Stratified Cross-Validation was performed. This procedure
systematically trains and evaluates a model for every combination of
hyperparameters specified in a predefined grid. The training data is split into
five "folds," and the process iterates five times. In each iteration, one fold is held
out as a validation set, while the model is trained on the remaining four. For
Logistic Regression, the grid search focused on the inverse regularization
strength parameter C. For Random Forest, the search space was more
extensive, exploring combinations of n_estimators, max_depth,
min_samples_split, min_samples_leaf, and class_weight. The guiding metric
for selecting the superior hyperparameter set was the weighted F1-score, which
is particularly well-suited for imbalanced datasets as it computes the F1-score
for each class and combines them using a weight proportional to the number of
true instances for each class, providing a more balanced performance measure
than raw accuracy.

Evaluation Metrics

The predictive efficacy of the final, optimized models was rigorously quantified
on the unseen test set using a suite of standard metrics designed to provide a
comprehensive and multi-faceted view of performance. The confusion matrix
was generated as the foundational tool for this analysis, providing a granular
view of classification performance by tabulating the counts of True Positives
(TP), True Negatives (TN), False Positives (FP), and False Negatives (FN) for
each of the three adaptability classes.

From this matrix, several key metrics were derived. Overall accuracy, the ratio
of all correct predictions to the total number of instances, served as a general
performance indicator. However, to gain a more nuanced understanding,
precision (TP / (TP + FP)), recall (TP / (TP + FN)), and the F1-score (the
harmonic mean of precision and recall) were calculated. These metrics were
computed for each class individually—providing insight into the model's ability
to correctly classify Low, Medium, and High adaptability—and as a weighted
average, which accounts for the class distribution in the test set to provide a
holistic assessment.

Finally, to evaluate the models' discriminative ability across all possible
classification thresholds, the Area Under the Receiver Operating Characteristic
(AUC-ROC) score was computed. Since ROC curves are inherently binary, this
metric was adapted for the multiclass context using two standard strategies:
'One-vs-Rest' (OVR), which computes the AUC for each class against all others,
and 'One-vs-One' (OVO), which computes the AUC for every pair of classes.
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Calculating and reporting both provides a more complete and robust picture of
the model's ability to distinguish between the different levels of student
adaptability.

Result and Discussion

Dataset Overview and Preprocessing Outcome

The initial dataset consisted of 500 unique student records, each described by
10 predictive features and one target variable, Adaptability _Label. Exploratory
Data Analysis immediately revealed a severe class imbalance in this target
variable, a critical challenge that can significantly bias model training. The
'Medium' adaptability class (Label 1) constituted the vast majority of samples
(75.2%), followed by the 'Low' class (Label 0) at a much smaller 24.0%. Most
critically, the 'High' adaptability class (Label 2) was extremely rare, representing
only 0.8% of the entire dataset, which translates to a mere four instances. This
distribution poses a significant risk that a standard classifier might achieve high
accuracy simply by defaulting to the majority class and ignoring the minority
classes entirely. Following a 75/25 stratified split to preserve this distribution in
the test set, the SMOTE procedure was applied to the training data. This process
successfully rebalanced the training set by generating synthetic instances of the
minority classes ('Low' and 'High'), resulting in a new, larger training set of 846
instances where all three classes had an equal 33.3% representation, providing
a theoretically unbiased dataset for model development.

Logistic Regression Model Performance

The optimized Multinomial Logistic Regression model, configured with a strong
regularization parameter (C of 100), demonstrated exceptionally high
performance on the test set in aggregate terms. It achieved an overall accuracy
of 98.40% and a weighted F1-score of 0.9800. The F1-score, being the
harmonic mean of precision and recall, indicates that the model was highly
effective at both correctly identifying instances of the majority classes and
avoiding false alarms. The model's discriminative ability was also robust,
reflected in a weighted AUC-ROC score of 0.9926 (OVR), suggesting it can
reliably distinguish between classes across various thresholds.

However, a detailed look at the per-class metrics and the confusion matrix
reveals a more nuanced and critical picture. The model performed almost
perfectly for the 'Low' (F1-score: 0.9831) and 'Medium' (F1-score: 0.9895)
adaptability classes, correctly classifying 29 out of 30 'Low' instances and all 94
'Medium' instances. Despite this, it completely failed to identify the single
instance of the 'High' adaptability class present in the test set. The confusion
matrix shows this instance was misclassified as 'Medium'. This total failure
resulted in precision, recall, and F1-scores of 0.0000 for Class 2, indicating that,
despite its high overall accuracy, the model has no predictive power for the most
desirable student outcome.

Random Forest Model Performance

The tuned Random Forest Classifier, configured with 100 estimators and a
max_depth of 10, yielded a considerably lower overall performance compared
to the Logistic Regression model. It achieved a more modest accuracy of
87.20% and a weighted F1-score of 0.8662. The weighted AUC-ROC score was
also lower at 0.9202 (OVR). The confusion matrix for the Random Forest shows
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more classification errors between the two main classes than the Logistic
Regression model, misclassifying 9 'Low' adaptability students as 'Medium' and
6 'Medium' students as 'Low".

The Random Forest performed reasonably well on the majority and primary
minority classes, achieving an F1-score of 0.7368 for 'Low' adaptability and
0.9167 for 'Medium' adaptability. However, mirroring the Logistic Regression
model's critical weakness, it also failed entirely to predict the 'High' adaptability
class. The single true instance of Class 2 was again misclassified as 'Medium',
leading to identical null scores (0.0000) for precision, recall, and F1-score for
this class. This result underscores that the complexity of the Random Forest
model offered no advantage in overcoming the core challenge presented by the
extreme minority class.

Feature Importance Analysis

The Random Forest model, by virtue of its tree-based structure, provided
valuable insights into the relative importance of the predictor variables in its
decision-making process. The analysis revealed a clear hierarchy of influence.
Innovation_Score (20.3%) emerged as the most influential feature, followed
closely by DL_Model_Deployment_Score (20.0%) and Industry_Collaboration
(15.5%). These three features, which represent a blend of mindset, advanced
practical skills, and real-world experience, collectively accounted for over 55%
of the model's predictive power. In stark contrast, traditional academic metrics
held significantly less sway. Most notably, Academic_GPA (2.8%) was found to
be the least important feature, suggesting that a student's grades have a
negligible relationship with their predicted adaptability in this context.

Interpretation of Model Performance

The primary objective was to compare Logistic Regression and Random Forest
for predicting student adaptability. The results present a compelling, albeit
complex, conclusion: the simpler, linear Logistic Regression model significantly
outperformed the more complex, non-linear Random Forest model on nearly all
aggregate metrics. This counterintuitive finding strongly suggests that the
underlying relationships between the features and the 'Low' and 'Medium’
adaptability classes are predominantly linear. The additional complexity of the
Random Forest, designed to capture intricate, non-linear patterns, appears to
have been detrimental, likely leading to a degree of overfitting on the nuances
of the training data (including the synthetic SMOTE samples) that did not
generalize well to the unseen test set.

However, the most critical and revealing finding is the uniform failure of both
models to predict the 'High Adaptability’ class. This is a direct and unambiguous
consequence of the extreme class imbalance in the original dataset. Despite the
application of SMOTE to balance the training data, the synthetic samples
generated for Class 2 were likely derived from a very small and homogenous
set of just three initial training instances. This lack of diversity meant the models
could not learn a robust, generalizable pattern for this class. Instead, their
optimization algorithms, driven by the goal of maximizing overall accuracy,
found it mathematically optimal to effectively ignore the 'High' adaptability
category. This is a classic pitfall in imbalanced classification problems. This
outcome directly answers the research questions by demonstrating that while
both models can reliably distinguish between 'Low' and 'Medium' adaptability,
neither is currently a viable tool for identifying students with high adaptability.
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Insights from Feature Importance

The feature importance analysis provides actionable pedagogical insights that
challenge traditional educational paradigms. The prominence of
Innovation_Score, DL_Model_Deployment_Score, and Industry Collaboration
strongly suggests that adaptability in the demanding context of embedded
systems entrepreneurship is more closely tied to a student's innovative mindset,
their proficiency in advanced, practical technical skills, and their engagement
with real-world industry challenges than to their academic record.

The fact that Academic_GPA was the least important predictor is a particularly
disruptive finding. It challenges the long-held institutional wisdom of relying
heavily on grades as the primary indicator of a student's potential for success in
dynamic, applied fields. This implies that educational programs aiming to foster
adaptability should strategically shift their focus. Curricula could be redesigned
to prioritize hands-on, project-based learning, creative problem-solving through
hackathons or design challenges, and mandatory industry partnerships or
internships. These activities directly cultivate the skills and experiences that the
model found to be most predictive, offering a clear roadmap for curriculum
reform.

Theoretical and Practical Implications

Theoretically, this study contributes to the educational data mining field by
serving as a potent case study on the limitations of standard classification
algorithms and corrective techniques like SMOTE when faced with extreme
minority classes. It demonstrates that while over-sampling can balance a
dataset numerically, it cannot create new, meaningful information if the initial
variance in the minority class is insufficient.

Practically, the implications for the field of educational Al are twofold and carry
significant ethical weight. On one hand, the high accuracy of the Logistic
Regression model in distinguishing between 'Low' and 'Medium' adaptability
students presents a valuable tool for proactive student support. It could be
deployed as an early-warning system to flag students who may require
additional support, mentorship, or targeted interventions to improve their
adaptability. On the other hand, the models' complete inability to identify high-
potential students means they are dangerously unsuited for talent identification
for specialized programs, scholarships, or startup incubators. Relying on these
models for such a purpose would not only be ineffective but would create a
system that systematically excludes the very students it is designed to find,
potentially reinforcing existing biases and overlooking unconventional talent.

Limitations and Future Work

The primary and most significant limitation of this study is the severe
underrepresentation of the 'High Adaptability' class within the dataset. The
findings are therefore constrained by the synthetic nature of the data, and future
work must prioritize the collection of larger, real-world student datasets with a
more balanced class distribution to validate these models. Further research
should also explore more advanced imbalance-handling techniques. For
instance, cost-sensitive learning, which assigns a much higher misclassification
penalty to the minority class during training, could force the model to pay more
attention to it. Alternatively, framing the problem as an anomaly detection task,
where 'High Adaptability' students are treated as rare and desirable outliers,
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might yield better results. Finally, a longitudinal study that tracks student
outcomes (e.g., startup creation, career progression) over several years would
be invaluable in confirming whether the features identified here are truly
predictive of long-term entrepreneurial success and adaptability.

Conclusion

This study conducted a comparative analysis of Logistic Regression and
Random Forest models to predict student adaptability in embedded systems
entrepreneurship education. The findings revealed that while the simpler
Logistic Regression model demonstrated superior accuracy in distinguishing
between students with 'Low' and 'Medium' levels of adaptability, both it and the
more complex Random Forest model completely failed to identify the 'High'
adaptability class due to its severe underrepresentation in the dataset.
Furthermore, the research highlighted that practical skills, innovative mindset,
and industry engagement were substantially more influential predictors of
adaptability than traditional academic metrics like GPA. This underscores a
critical disconnect between conventional measures of student success and the
attributes required for entrepreneurial readiness in technical fields. Ultimately,
this research contributes a dual-sided perspective to the application of Al in
learning. It presents a functional, albeit limited, predictive tool that can serve as
an early-warning system for educators to support students who may struggle
with adaptability, while simultaneously offering a stark, data-driven caution
against using such models for talent identification without sufficient and
balanced data. The path forward involves not only the collection of more robust,
real-world datasets and the exploration of advanced modeling techniques but
also a pedagogical shift. By embracing the insights from the feature importance
analysis, educational institutions can better align their curricula with the
demands of the modern tech landscape, fostering the adaptable, innovative, and
resilient entrepreneurs of the future through a greater emphasis on experiential,
project-based learning.
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