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ABSTRACT 

The increasing demand for innovation in technology sectors necessitates a deeper 

understanding of the factors that foster adaptability among students in specialized 

fields like embedded systems entrepreneurship. This study provides a comparative 

performance analysis of two prominent machine learning algorithms—Logistic 

Regression and Random Forest—for predicting student adaptability levels (Low, 

Medium, and High). Utilizing a dataset comprising academic, experiential, and 

psychometric features, this research addresses the critical challenge of identifying 

student potential in a data-driven manner. The methodology employed a stratified 

data split and the Synthetic Minority Over-sampling Technique (SMOTE) to mitigate 

the severe class imbalance inherent in the dataset, followed by a rigorous 

hyperparameter tuning process for both models. The results revealed a nuanced 

outcome. While the linear Logistic Regression model achieved a superior overall 

accuracy (98.4%) compared to the more complex Random Forest model (87.2%), 

both algorithms completely failed to identify any instances of the 'High' adaptability 

class. This critical failure underscores the limitations of standard classification 

techniques when faced with extremely rare positive instances. Furthermore, a feature 

importance analysis conducted with the Random Forest model indicated that practical 

skills, such as innovation and model deployment scores, were the most significant 

predictors of adaptability, whereas traditional academic metrics like GPA had 

negligible influence. This study concludes that while AI-driven models show 

significant promise as an early-warning system to identify students who may require 

additional support, they are currently unsuitable for talent identification due to data 

limitations. The findings strongly advocate for a pedagogical shift in technical 

entrepreneurship education, emphasizing the need to prioritize experiential learning 

and practical skill development over conventional academic measures to cultivate the 

next generation of adaptable innovators. 

Keywords Adaptability, AI in Education, Embedded Systems, Predictive Modeling, Random 

Forest 

Introduction 

The growing importance of entrepreneurship education in technology, 
particularly in embedded systems, cannot be understated. In an increasingly 
competitive and rapidly evolving technological landscape, the adaptability of 
students is crucial for innovation, technology development, and the success of 
entrepreneurial ventures. Within this context, a significant challenge arises: the 
ability to identify and nurture adaptability in students pursuing embedded 
systems entrepreneurship, as existing frameworks and tools often fall short in 
providing robust predictive capabilities that support proactive student 
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engagement and development. 

Recent literature highlights the application of Artificial Intelligence (AI) as a 
transformative tool in educational settings. AI-driven models can facilitate 
personalized learning experiences, enabling curricula that respond to individual 
student needs and potentials. Chan and Zary discuss how AI can enhance 
adaptive assessments, allowing the selection of subsequent questions based 
on previous student responses, which underscores the technology’s capability 
to inform and optimize learning paths [1]. This technological leverage is 
particularly crucial in embedded systems education, where diverse learning 
styles and paces can create disparities in understanding complex concepts [2]. 
Additionally, predictive analytics can assist in developing early warning systems 
for academic performance, allowing educators to intervene proactively and 
guide students effectively [3]. 

The integration of AI in educational frameworks could support curriculum 
development specifically tailored for embedded systems and entrepreneurship. 
By harnessing AI's predictive capabilities, educators can create a responsive 
learning environment that accommodates different learning trajectories, leading 
to improved student outcomes [4]. For instance, Jiao et al demonstrate how AI 
models in online engineering education can accurately predict student 
performance, identifying areas in need of attention or improvement [3]. This 
predictive modeling is essential for fostering entrepreneurial readiness, allowing 
institutions to align educational outcomes with industry requirements. 

Moreover, the challenges associated with operationalizing AI in education, 
particularly regarding data identification and bias in algorithms, present 
significant considerations that must be addressed. Fahimirad and Kotamjani 
explore the complexities of integrating AI within teaching and learning contexts, 
emphasizing the need for careful implementation to avoid exacerbating 
inequalities [5]. Therefore, a focused approach to faculty training and resource 
allocation becomes imperative to ensure that both educators and students 
benefit from these technological advancements. 

The potential of AI-driven predictive modeling to enhance student adaptability in 
embedded systems entrepreneurship presents a compelling avenue for 
research and curriculum reform. By integrating AI technologies into educational 
practices, institutions can better prepare students for the entrepreneurial 
challenges they will face in their professional careers. The successful 
deployment of these models not only stands to benefit individual student 
learning experiences but also contributes to scalable improvements in 
educational effectiveness across the board. 

The primary objective of this study is to evaluate and compare the performance 
of two supervised machine learning models—Logistic Regression and Random 
Forest—in predicting student adaptability levels within the context of embedded 
systems entrepreneurship education. This research seeks to determine which 
model offers a more robust framework for identifying students who may require 
additional support to cultivate their adaptive capabilities. To achieve this, the 
study will first investigate how accurately a Logistic Regression model can 
predict adaptability levels, followed by a similar evaluation of a Random Forest 
model. Subsequently, the research will conduct a comparative analysis of the 
two models based on their predictive performance, specifically concerning 
accuracy, precision, recall, F1-score, and Area Under the Curve (AUC) metrics. 
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This study is specifically delimited to the analysis of the Students’ Industrial 
Engagement and Readiness Dataset (SIERD), and its findings are therefore 
contingent on the variables and population represented therein. The research 
focuses exclusively on Logistic Regression and Random Forest, with other 
machine learning algorithms falling outside the scope of this investigation, and 
the definition of "adaptability" is based on the constructs provided within the 
dataset. 

Literature Review 

Student Adaptability in Education 

Student adaptability is increasingly recognized as a crucial competency in 
educational settings, particularly within the realms of Science, Technology, 
Engineering, and Mathematics (STEM) and entrepreneurship. Conceptually, 
adaptability encompasses cognitive, behavioral, and affective dimensions that 
influence how students respond to changing environments and challenges. 
According to Dewani and Nuzulia, students exposed to structured career 
education demonstrate higher career adaptability, suggesting that institutional 
support can enhance students' ability to navigate fluctuating academic and 
professional landscapes [6]. Influencing factors such as social support, 
emotional well-being, and prior experiences significantly shape adaptability, 
impacting students' capacity to engage and excel in demanding fields [7]. 

The importance of adaptability extends to entrepreneurship education, where 
students must integrate theoretical knowledge with practical applications, 
particularly in complex fields like embedded systems entrepreneurship. 
Embedded systems require a convergence of hardware and software 
knowledge and the ability to prototype rapidly and validate market needs [8]. 
This presents unique challenges that necessitate a strong foundation in 
adaptability, enabling students to maneuver through uncertainties effectively [9]. 
By fostering project-based learning environments and encouraging industry 
engagement, educational frameworks can enhance the technical skills and 
entrepreneurial capabilities of students within these domains, such as skills 
related to Raspberry Pi and deep learning model deployment [10]. 

Entrepreneurship Education in Technical Domains 

Entrepreneurship education in technical fields like embedded systems 
comprises various pedagogical approaches that prioritize hands-on learning and 
interdisciplinary collaboration. Teaching strategies must integrate not just 
technical competencies but also nurture soft skills, which are increasingly 
acknowledged as critical for entrepreneurial success. Kormakova et al 
emphasize that the STEM approach, which focuses on real-world problem-
solving, can effectively enhance students' critical thinking and creativity [11], 
which are vital in entrepreneurial ventures [12]. Furthermore, Wu et al explore 
how teacher readiness significantly influences the effectiveness of STEM 
implementation, positing that teacher self-efficacy can catalyze student 
engagement and interest in STEM careers [13]. 

However, embedded systems entrepreneurship often faces specific challenges 
such as effective hardware-software integration, market validation, and rapid 
prototyping. According to Rakićević et al, providing students with robust 
entrepreneurial education can significantly impact their preparedness to tackle 
these challenges, emphasizing the interplay between technical knowledge and 
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entrepreneurial mindset [8]. Engaging students with real-world projects not only 
solidifies their technical skills but also enhances their ability to innovate within 
rapidly changing environments. 

Machine Learning in Educational Data Mining (EDM) and AI in 
Learning 

Machine Learning (ML) applications in education are increasingly being 
recognized as powerful tools for enhancing educational outcomes, particularly 
in the areas of predicting student performance, dropout rates, and learning 
styles. These applications allow educational institutions to harness the potential 
of data-driven insights to improve student success. By integrating ML, educators 
can analyze vast datasets to identify patterns and trends that can inform 
intervention strategies, create tailored learning experiences, and ultimately 
enhance the overall educational experience for students [14]. For instance, prior 
research has highlighted the effectiveness of methods such as Logistic 
Regression and Random Forest in predicting academic outcomes across 
various educational contexts [14], [15]. These methods have been shown to 
provide valuable insights that can guide educational institutions in making 
informed decisions to support student learning and success. 

As more institutions adopt these technologies, they can leverage the insights 
gained from predictive modeling to provide timely support that is tailored to the 
specific needs of each student. This personalized approach not only enhances 
adaptability but also improves performance in higher education settings [16]. By 
utilizing ML, educators can better understand the unique needs and challenges 
faced by each student, allowing them to provide more effective and targeted 
support. However, despite these advancements, there are still challenges that 
need to be addressed. One significant challenge is the accurate quantification 
of soft skills and behavioral traits, such as adaptability and innovation, which are 
crucial in entrepreneurship. These skills are often difficult to measure and 
quantify, making it challenging to incorporate them into predictive models. 

Existing studies do not sufficiently address these complexities, as highlighted in 
the gap analysis conducted by Chen et al [17]. This analysis points to the need 
for more comparative research that utilizes robust datasets to predict 
adaptability in embedded systems entrepreneurship. By conducting such 
research, educators and policymakers can gain a better understanding of how 
to foster these essential skills in students, ultimately preparing them for success 
in both academic and entrepreneurial endeavors. In conclusion, while ML offers 
significant potential for improving educational outcomes, there is still a need for 
further research and development to fully realize its benefits, particularly in the 
area of predicting and enhancing adaptability and innovation. 

Predictive Modeling for Soft Skills and Behavioral Traits 

The endeavor to quantify and predict soft skills like adaptability presents 
significant challenges in educational research. While methodologies exist that 
have successfully utilized ML for quantifying various academic traits, the specific 
contextual application to traits such as adaptability remains underexplored [18]. 
Identifying suitable dataset features that encapsulate the multifaceted nature of 
adaptability is critical for developing effective predictive models [17]. Therefore, 
developing robust predictive techniques for soft skills is essential for enhancing 
students' readiness for entrepreneurial roles, especially in technical domains 
like embedded systems. 
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In sum, the literature indicates that fostering student adaptability in tech-centric 
entrepreneurship education requires a multifaceted approach. This includes 
establishing supportive educational frameworks, deploying effective 
pedagogical strategies, and integrating advanced predictive technologies. The 
existing gaps in predictive modeling for psychological traits such as adaptability 
underline the need for further research, suggesting that future studies could 
provide critical insights into enhancing student preparedness for the 
complexities of modern entrepreneurial landscapes. 

Method 

This section provides a detailed exposition of the research methodology, 
encompassing the dataset characteristics, the multi-stage data preprocessing 
pipeline, the architecture and theoretical underpinnings of the selected machine 
learning models, and the rigorous framework for hyperparameter optimization 
and performance evaluation. The entire experimental workflow was 
programmatically executed in a Python environment, utilizing high-level libraries 
including Scikit-learn for modeling, Pandas for data manipulation, and 
Imbalanced-learn for handling class distribution anomalies. 

Dataset and Initial Preparation 

The foundation of this research is Student Entrepreneurship dataset, a 
specialized collection of student-centric attributes designed to capture the 
multifaceted nature of entrepreneurial potential in a technical domain. The 
primary analytical goal is the prediction of the Adaptability_Label, a multi-class 
ordinal target variable with three logically sequenced levels: Low (encoded as 
0), Medium (1), and High (2). While the models in this study treat the variable 
as categorical, its ordinal nature implies an inherent order, a characteristic that 
adds valuable context to the interpretation of classification errors. The feature 
space is heterogeneous, comprising a mix of academic performance indicators 
(Academic_GPA), experiential metrics (Project_Count, Industry_Collaboration), 
and psychometric constructs (Innovation_Score, Self_Efficacy_Score). 

The initial data preparation phase involved the programmatic exclusion of the 
Student_ID feature. This column, being a high-cardinality, arbitrary identifier, 
possesses no intrinsic or generalizable predictive information. Its inclusion 
would introduce severe methodological flaws; a model could simply memorize 
the outcome for each unique ID, leading to near-perfect performance on the 
training data. This phenomenon, a form of extreme overfitting, results from the 
model learning spurious correlations that are not present in the underlying 
population, rendering it completely ineffective at making predictions on new, 
unseen data. Removing such identifier columns is a fundamental and non-
negotiable step in building a valid and generalizable predictive model. 

Data Preprocessing and Feature Engineering 

Following initial preparation, the preprocessed dataset was partitioned into a 
training set and a hold-out test set using a 75/25 ratio. This is a conventional 
and empirically validated split that balances the competing needs of providing 
the models with a substantial majority of the data for robust parameter learning, 
while reserving a sufficiently large, independent set for an unbiased final 
evaluation of the models' generalization capabilities. To preserve the a priori 
class probabilities of the Adaptability_Label in both subsets, a stratified 
sampling strategy was implemented. This technique ensures that the relative 
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proportions of the low, medium, and high adaptability classes are maintained 
across both the training and testing partitions, a critical step that prevents 
sampling bias and guarantees that the test set provides a faithful representation 
of the original dataset's distribution. For the purpose of experimental 
reproducibility, the pseudo-random number generator was seeded with a 
constant value of 42, ensuring that the exact same data split can be recreated 
in future analyses. 

A key challenge identified during exploratory data analysis was a notable class 
imbalance within the training data, a common issue in real-world datasets where 
certain outcomes are naturally rarer than others. To rectify this and prevent the 
learning algorithms from developing a predictive bias towards the majority class, 
the SMOTE was employed. SMOTE operates in the feature space by creating 
synthetic instances of the minority classes. For each minority class sample, it 
identifies its k-nearest minority-class neighbors and generates new samples 
along the line segments joining the sample and its chosen neighbors. This 
procedure, unlike simple random over-sampling, creates more varied and 
robust decision boundaries. Crucially, this over-sampling was applied only to 
the training partition after the train-test split to avoid data leakage, a critical 
methodological error where information from the test set contaminates the 
training process, leading to artificially inflated and invalid performance 
estimates. 

Subsequent to resampling, all predictor variables underwent feature scaling via 
the StandardScaler. This transformation standardizes each feature by applying 
the z-score normalization formula, (x - μ) / σ, where μ is the mean and σ is the 
standard deviation of the feature in the training data. This process results in a 
distribution with a mean of zero and a standard deviation of one. This step is 
essential for algorithms like Logistic Regression, whose gradient-based 
optimization process can converge much faster and more reliably on 
standardized features. It also prevents features with larger magnitudes and 
variances from disproportionately influencing the model's parameter 
optimization. The scaler was fitted exclusively on the resampled training data, 
and the identical, learned transformation (using the same μ and σ values) was 
subsequently applied to the test data to ensure methodological consistency. 

Machine Learning Models and Hyperparameter Tuning 

Two distinct, yet powerful, classification algorithms were selected for this 
comparative analysis: Multinomial Logistic Regression and the Random Forest 
Classifier, representing linear and non-linear modeling paradigms, respectively. 

Logistic Regression was implemented as a robust, interpretable linear baseline. 
Given the three-level target variable, a multinomial (or Softmax) configuration 
was used. This approach generalizes binary logistic regression by employing 
the Softmax function to calculate a vector of probabilities, one for each class, 
which collectively sum to one. The model was optimized using the 'lbfgs' solver, 
an efficient quasi-Newton method well-suited for this problem. To mitigate 
overfitting and improve generalization, L2 regularization (Ridge) was 
incorporated. This technique adds a penalty term to the cost function that is 
proportional to the square of the magnitude of the model's coefficients, 
effectively discouraging overly complex models with large coefficients that might 
be fitting to noise in the training data. 

The Random Forest Classifier was selected as a more complex, non-linear 
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model renowned for its high accuracy and robustness. It is an ensemble 
learning method that operates by constructing a large number of individual 
decision trees at training time. Its predictive power stems from two key principles 
that combat the high variance and overfitting tendencies of single decision trees: 
bootstrap aggregating (bagging), where each tree is trained on a different 
random subsample of the data drawn with replacement, and feature 
randomness, where each split in a tree is determined from a random subset of 
the total features. This dual-randomization strategy effectively decorrelates the 
individual trees. The final prediction is made by aggregating the votes from all 
trees in the forest (majority vote), which significantly reduces the variance of the 
final model compared to its individual components. 

To determine the optimal architecture for each model, an exhaustive Grid 
Search with 5-fold Stratified Cross-Validation was performed. This procedure 
systematically trains and evaluates a model for every combination of 
hyperparameters specified in a predefined grid. The training data is split into 
five "folds," and the process iterates five times. In each iteration, one fold is held 
out as a validation set, while the model is trained on the remaining four. For 
Logistic Regression, the grid search focused on the inverse regularization 
strength parameter C. For Random Forest, the search space was more 
extensive, exploring combinations of n_estimators, max_depth, 
min_samples_split, min_samples_leaf, and class_weight. The guiding metric 
for selecting the superior hyperparameter set was the weighted F1-score, which 
is particularly well-suited for imbalanced datasets as it computes the F1-score 
for each class and combines them using a weight proportional to the number of 
true instances for each class, providing a more balanced performance measure 
than raw accuracy. 

Evaluation Metrics 

The predictive efficacy of the final, optimized models was rigorously quantified 
on the unseen test set using a suite of standard metrics designed to provide a 
comprehensive and multi-faceted view of performance. The confusion matrix 
was generated as the foundational tool for this analysis, providing a granular 
view of classification performance by tabulating the counts of True Positives 
(TP), True Negatives (TN), False Positives (FP), and False Negatives (FN) for 
each of the three adaptability classes. 

From this matrix, several key metrics were derived. Overall accuracy, the ratio 
of all correct predictions to the total number of instances, served as a general 
performance indicator. However, to gain a more nuanced understanding, 
precision (TP / (TP + FP)), recall (TP / (TP + FN)), and the F1-score (the 
harmonic mean of precision and recall) were calculated. These metrics were 
computed for each class individually—providing insight into the model's ability 
to correctly classify Low, Medium, and High adaptability—and as a weighted 
average, which accounts for the class distribution in the test set to provide a 
holistic assessment. 

Finally, to evaluate the models' discriminative ability across all possible 
classification thresholds, the Area Under the Receiver Operating Characteristic 
(AUC-ROC) score was computed. Since ROC curves are inherently binary, this 
metric was adapted for the multiclass context using two standard strategies: 
'One-vs-Rest' (OVR), which computes the AUC for each class against all others, 
and 'One-vs-One' (OVO), which computes the AUC for every pair of classes. 
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Calculating and reporting both provides a more complete and robust picture of 
the model's ability to distinguish between the different levels of student 
adaptability. 

Result and Discussion 

Dataset Overview and Preprocessing Outcome 

The initial dataset consisted of 500 unique student records, each described by 
10 predictive features and one target variable, Adaptability_Label. Exploratory 
Data Analysis immediately revealed a severe class imbalance in this target 
variable, a critical challenge that can significantly bias model training. The 
'Medium' adaptability class (Label 1) constituted the vast majority of samples 
(75.2%), followed by the 'Low' class (Label 0) at a much smaller 24.0%. Most 
critically, the 'High' adaptability class (Label 2) was extremely rare, representing 
only 0.8% of the entire dataset, which translates to a mere four instances. This 
distribution poses a significant risk that a standard classifier might achieve high 
accuracy simply by defaulting to the majority class and ignoring the minority 
classes entirely. Following a 75/25 stratified split to preserve this distribution in 
the test set, the SMOTE procedure was applied to the training data. This process 
successfully rebalanced the training set by generating synthetic instances of the 
minority classes ('Low' and 'High'), resulting in a new, larger training set of 846 
instances where all three classes had an equal 33.3% representation, providing 
a theoretically unbiased dataset for model development. 

Logistic Regression Model Performance 

The optimized Multinomial Logistic Regression model, configured with a strong 
regularization parameter (C of 100), demonstrated exceptionally high 
performance on the test set in aggregate terms. It achieved an overall accuracy 
of 98.40% and a weighted F1-score of 0.9800. The F1-score, being the 
harmonic mean of precision and recall, indicates that the model was highly 
effective at both correctly identifying instances of the majority classes and 
avoiding false alarms. The model's discriminative ability was also robust, 
reflected in a weighted AUC-ROC score of 0.9926 (OVR), suggesting it can 
reliably distinguish between classes across various thresholds. 

However, a detailed look at the per-class metrics and the confusion matrix 
reveals a more nuanced and critical picture. The model performed almost 
perfectly for the 'Low' (F1-score: 0.9831) and 'Medium' (F1-score: 0.9895) 
adaptability classes, correctly classifying 29 out of 30 'Low' instances and all 94 
'Medium' instances. Despite this, it completely failed to identify the single 
instance of the 'High' adaptability class present in the test set. The confusion 
matrix shows this instance was misclassified as 'Medium'. This total failure 
resulted in precision, recall, and F1-scores of 0.0000 for Class 2, indicating that, 
despite its high overall accuracy, the model has no predictive power for the most 
desirable student outcome. 

Random Forest Model Performance 

The tuned Random Forest Classifier, configured with 100 estimators and a 
max_depth of 10, yielded a considerably lower overall performance compared 
to the Logistic Regression model. It achieved a more modest accuracy of 
87.20% and a weighted F1-score of 0.8662. The weighted AUC-ROC score was 
also lower at 0.9202 (OVR). The confusion matrix for the Random Forest shows 
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more classification errors between the two main classes than the Logistic 
Regression model, misclassifying 9 'Low' adaptability students as 'Medium' and 
6 'Medium' students as 'Low'. 

The Random Forest performed reasonably well on the majority and primary 
minority classes, achieving an F1-score of 0.7368 for 'Low' adaptability and 
0.9167 for 'Medium' adaptability. However, mirroring the Logistic Regression 
model's critical weakness, it also failed entirely to predict the 'High' adaptability 
class. The single true instance of Class 2 was again misclassified as 'Medium', 
leading to identical null scores (0.0000) for precision, recall, and F1-score for 
this class. This result underscores that the complexity of the Random Forest 
model offered no advantage in overcoming the core challenge presented by the 
extreme minority class. 

Feature Importance Analysis 

The Random Forest model, by virtue of its tree-based structure, provided 
valuable insights into the relative importance of the predictor variables in its 
decision-making process. The analysis revealed a clear hierarchy of influence. 
Innovation_Score (20.3%) emerged as the most influential feature, followed 
closely by DL_Model_Deployment_Score (20.0%) and Industry_Collaboration 
(15.5%). These three features, which represent a blend of mindset, advanced 
practical skills, and real-world experience, collectively accounted for over 55% 
of the model's predictive power. In stark contrast, traditional academic metrics 
held significantly less sway. Most notably, Academic_GPA (2.8%) was found to 
be the least important feature, suggesting that a student's grades have a 
negligible relationship with their predicted adaptability in this context. 

Interpretation of Model Performance 

The primary objective was to compare Logistic Regression and Random Forest 
for predicting student adaptability. The results present a compelling, albeit 
complex, conclusion: the simpler, linear Logistic Regression model significantly 
outperformed the more complex, non-linear Random Forest model on nearly all 
aggregate metrics. This counterintuitive finding strongly suggests that the 
underlying relationships between the features and the 'Low' and 'Medium' 
adaptability classes are predominantly linear. The additional complexity of the 
Random Forest, designed to capture intricate, non-linear patterns, appears to 
have been detrimental, likely leading to a degree of overfitting on the nuances 
of the training data (including the synthetic SMOTE samples) that did not 
generalize well to the unseen test set. 

However, the most critical and revealing finding is the uniform failure of both 
models to predict the 'High Adaptability' class. This is a direct and unambiguous 
consequence of the extreme class imbalance in the original dataset. Despite the 
application of SMOTE to balance the training data, the synthetic samples 
generated for Class 2 were likely derived from a very small and homogenous 
set of just three initial training instances. This lack of diversity meant the models 
could not learn a robust, generalizable pattern for this class. Instead, their 
optimization algorithms, driven by the goal of maximizing overall accuracy, 
found it mathematically optimal to effectively ignore the 'High' adaptability 
category. This is a classic pitfall in imbalanced classification problems. This 
outcome directly answers the research questions by demonstrating that while 
both models can reliably distinguish between 'Low' and 'Medium' adaptability, 
neither is currently a viable tool for identifying students with high adaptability. 
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Insights from Feature Importance 

The feature importance analysis provides actionable pedagogical insights that 
challenge traditional educational paradigms. The prominence of 
Innovation_Score, DL_Model_Deployment_Score, and Industry_Collaboration 
strongly suggests that adaptability in the demanding context of embedded 
systems entrepreneurship is more closely tied to a student's innovative mindset, 
their proficiency in advanced, practical technical skills, and their engagement 
with real-world industry challenges than to their academic record. 

The fact that Academic_GPA was the least important predictor is a particularly 
disruptive finding. It challenges the long-held institutional wisdom of relying 
heavily on grades as the primary indicator of a student's potential for success in 
dynamic, applied fields. This implies that educational programs aiming to foster 
adaptability should strategically shift their focus. Curricula could be redesigned 
to prioritize hands-on, project-based learning, creative problem-solving through 
hackathons or design challenges, and mandatory industry partnerships or 
internships. These activities directly cultivate the skills and experiences that the 
model found to be most predictive, offering a clear roadmap for curriculum 
reform. 

Theoretical and Practical Implications 

Theoretically, this study contributes to the educational data mining field by 
serving as a potent case study on the limitations of standard classification 
algorithms and corrective techniques like SMOTE when faced with extreme 
minority classes. It demonstrates that while over-sampling can balance a 
dataset numerically, it cannot create new, meaningful information if the initial 
variance in the minority class is insufficient. 

Practically, the implications for the field of educational AI are twofold and carry 
significant ethical weight. On one hand, the high accuracy of the Logistic 
Regression model in distinguishing between 'Low' and 'Medium' adaptability 
students presents a valuable tool for proactive student support. It could be 
deployed as an early-warning system to flag students who may require 
additional support, mentorship, or targeted interventions to improve their 
adaptability. On the other hand, the models' complete inability to identify high-
potential students means they are dangerously unsuited for talent identification 
for specialized programs, scholarships, or startup incubators. Relying on these 
models for such a purpose would not only be ineffective but would create a 
system that systematically excludes the very students it is designed to find, 
potentially reinforcing existing biases and overlooking unconventional talent. 

Limitations and Future Work 

The primary and most significant limitation of this study is the severe 
underrepresentation of the 'High Adaptability' class within the dataset. The 
findings are therefore constrained by the synthetic nature of the data, and future 
work must prioritize the collection of larger, real-world student datasets with a 
more balanced class distribution to validate these models. Further research 
should also explore more advanced imbalance-handling techniques. For 
instance, cost-sensitive learning, which assigns a much higher misclassification 
penalty to the minority class during training, could force the model to pay more 
attention to it. Alternatively, framing the problem as an anomaly detection task, 
where 'High Adaptability' students are treated as rare and desirable outliers, 
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might yield better results. Finally, a longitudinal study that tracks student 
outcomes (e.g., startup creation, career progression) over several years would 
be invaluable in confirming whether the features identified here are truly 
predictive of long-term entrepreneurial success and adaptability. 

Conclusion 

This study conducted a comparative analysis of Logistic Regression and 
Random Forest models to predict student adaptability in embedded systems 
entrepreneurship education. The findings revealed that while the simpler 
Logistic Regression model demonstrated superior accuracy in distinguishing 
between students with 'Low' and 'Medium' levels of adaptability, both it and the 
more complex Random Forest model completely failed to identify the 'High' 
adaptability class due to its severe underrepresentation in the dataset. 
Furthermore, the research highlighted that practical skills, innovative mindset, 
and industry engagement were substantially more influential predictors of 
adaptability than traditional academic metrics like GPA. This underscores a 
critical disconnect between conventional measures of student success and the 
attributes required for entrepreneurial readiness in technical fields. Ultimately, 
this research contributes a dual-sided perspective to the application of AI in 
learning. It presents a functional, albeit limited, predictive tool that can serve as 
an early-warning system for educators to support students who may struggle 
with adaptability, while simultaneously offering a stark, data-driven caution 
against using such models for talent identification without sufficient and 
balanced data. The path forward involves not only the collection of more robust, 
real-world datasets and the exploration of advanced modeling techniques but 
also a pedagogical shift. By embracing the insights from the feature importance 
analysis, educational institutions can better align their curricula with the 
demands of the modern tech landscape, fostering the adaptable, innovative, and 
resilient entrepreneurs of the future through a greater emphasis on experiential, 
project-based learning. 
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