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The transition to online learning has reshaped academic engagement and well-being
among students, yet the factors driving changes in performance remain poorly
understood. This study investigates how lifestyle and mental health indicators predict
self-reported changes in academic performance during online learning using
interpretable machine learning models. A dataset of 1,000 students was analyzed
through a comparative framework employing Logistic Regression and Random Forest
classifiers, complemented by SHAP-based explanations. Descriptive analysis
revealed balanced demographic distributions, with most students reporting moderate
stress levels and similar proportions across performance categories. Model results
showed comparable accuracies of approximately 0.33, reflecting the complexity of
predicting academic outcomes. However, both models consistently identified screen
time, sleep duration, and physical activity as the most influential predictors, while
stress level and exam anxiety exhibited smaller yet coherent effects. Logistic
Regression highlighted categorical distinctions such as education level and anxiety,
whereas Random Forest captured nonlinear interactions among lifestyle variables.
SHAP analyses provided global and local interpretability, confirming that higher
screen exposure reduced the likelihood of improvement, while adequate sleep and
regular physical activity were positively associated with better outcomes. These
findings emphasize the central role of lifestyle balance in sustaining academic
performance and mental well-being during remote education. Despite modest
predictive power, the interpretable modeling approach offers actionable insights for
educators, policymakers, and students to foster healthier and more effective online

) learning environments.
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Over the past decade—and sharply accelerated during the COVID-19

Additional Information and pandemic—online learning has become a central modality in higher education,
Declarations can be found on reshaping pedagogy and student experience. lts promise lies in flexibility,
page 283 access, and autonomy, enabling learners to manage time and place while

engaging diverse resources [1], [2]. Yet this same modality places greater
demands on self-regulation, digital readiness, and sustained motivation,
conditions that vary widely across students and institutions [3], [4].
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Artificial Intelligence in Learning

challenges—has implications for equity and outcomes. Barriers such as limited
devices or bandwidth, diminished instructor—student connection, and competing
domestic responsibilities can depress engagement, especially among at-risk
learners [5], [6]. Quality assurance frameworks and supportive designs that
scaffold time management and self-regulated learning are therefore critical to
ensure inclusivity and academic success in digital settings [7], [8].

Concurrently, concerns about student mental well-being in virtual environments
have intensified. Stress, anxiety, and feelings of isolation have been repeatedly
linked to lower satisfaction and poorer academic outcomes during remote
learning transitions [9], [10]. Qualitative accounts point to unfamiliar platforms,
unclear expectations, and compressed deadlines as proximal stressors,
particularly when instructional support is thin or social presence is weak [11],
[12].

Lifestyle changes that accompany remote study compound these risks.
Increased recreational and academic screen time has been associated with
lower performance, sleep disruption, and adverse affect [13], [14]. By contrast,
adequate sleep and regular physical activity support memory, attention, and
mood regulation—core prerequisites for learning [15], [16]. Emerging “lifestyle
psychiatry” evidence further suggests that diet, exercise, and sleep can prevent
or alleviate common mental disorders, underscoring the need for holistic
approaches to student health [17], [18].

Despite these insights, a clear gap remains: few studies jointly examine how
lifestyle behaviors and mental health indicators together relate to changes in
self-reported academic performance during online learning, and even fewer do
so using interpretable Artificial Intelligence (Al). Prior work often isolates single
factors (e.g., screen time or sleep) or privileges prediction over explanation,
limiting the translation of findings into targeted, actionable support [19], [20]. In
parallel, learning analytics and Al studies demonstrate strong predictive power
but not always the transparency needed for stakeholder trust and intervention
design [21].

Interpretable Machine Learning (IML) offers a principled path forward. In high-
stakes educational contexts, stakeholders value transparency alongside
accuracy to ensure fairness, accountability, and trust. Logistic Regression
provides intrinsically interpretable coefficients for estimating direction and
strength of associations, while tree-based ensembles such as Random Forest
capture nonlinearities and interactions that mirror the complexity of student
behavior; model-agnostic tools like SHAP yield global and local explanations
that connect predictions to features in comprehensible ways. Against this
backdrop, the present study investigates which lifestyle factors (screen time,
sleep duration, physical activity) and mental health indicators (stress, exam
anxiety) are most associated with self-reported changes in academic
performance (declinedsameimproved) during online learning.

Literature Review

Online Learning Environments and Student Engagement

The rise of online learning has redefined higher education by emphasizing
flexibility, accessibility, and individualized learning pathways. During the COVID -
19 pandemic, institutions rapidly adopted virtual modalities that granted learners
control over time and place, enabling self-paced study and resource diversity
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[22]. However, this flexibility also shifted responsibility toward students, requiring
stronger self-regulation and motivation [23]. Studies reveal that students with
higher digital readiness and self-discipline tend to engage more effectively in
online courses, while those lacking these attributes face difficulties maintaining
focus and commitment.

Yet the benefits of online education coexist with persistent inequities and
engagement challenges. Learners often encounter technological barriers,
inadequate instructional presence, and competing household responsibilities
that restrict participation [5]. These conditions are particularly detrimental for at-
risk students who may lack supportive learning environments. Research
underscores that enhancing quality assurance—through clear course design,
prompt feedback, and community building—is crucial to sustain motivation and
performance [2]. Moreover, social connectedness plays an essential role in
mitigating isolation. As [24] show, peer and instructor support can alleviate
depressive symptoms and enhance academic motivation, highlighting that
psychological well-being and engagement are mutually reinforcing in virtual
classrooms.

Ultimately, research depicts online learning as a dual-edged phenomenon—
empowering yet demanding. When coupled with adequate institutional support
and technological scaffolds, it can foster autonomy and inclusive participation.
Conversely, insufficient engagement mechanisms or inequitable access can
erode academic outcomes and mental wellness, motivating deeper inquiry into
the psychosocial dimensions of online study.

Student Mental Health and Lifestyle Predictors of Academic
Performance

The shift to remote education has amplified mental health challenges such as
stress, anxiety, and social isolation among students. Research [9] observed that
dissatisfaction with online classes correlates with higher stress, anxiety, and
depressive symptoms, while [10] confirmed that elevated stress levels reduce
academic satisfaction and performance. This relationship indicates that
emotional well-being is a decisive mediator between learning modality and
achievement.

Lifestyle disruptions further exacerbate these psychological strains. Increased
screen exposure—a hallmark of online education—has been consistently linked
to lower academic performance, sleep disruption, and cognitive overload [25].
Prolonged blue-light exposure interferes with circadian rhythms, diminishing
sleep quality and, consequently, cognitive efficiency [26]. Sleep deprivation
undermines memory consolidation, attention, and mood regulation—factors
crucial for academic success.

Simultaneously, reduced physical activity during remote study detracts from
mental and cognitive health. Studies demonstrate that active students exhibit
lower stress levels, sharper focus, and improved academic outcomes. The
“lifestyle psychiatry” perspective integrates these findings, asserting that lifestyle
habits—diet, exercise, and sleep—are central to preventing and alleviating
mental disorders. Collectively, these studies show that maintaining balanced
daily routines and physical engagement is not peripheral but foundational to
sustaining both mental wellness and academic productivity.

Despite recognition of these relationships, few investigations have
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simultaneously modeled multiple lifestyle and psychological variables to predict
academic outcomes. Most rely on descriptive or correlational analyses, leaving
an interpretive gap regarding how combined behaviors influence self-reported
performance change during online learning. Addressing this limitation requires
analytical frameworks capable of capturing and explaining complex, multivariate
dependencies among mental health, lifestyle, and educational success.

Interpretable Machine Learning in Educational Research

Al and learning analytics now offer powerful means to understand student
behavior, yet their adoption in education raises ethical and transparency
concerns. In high-stakes domains, interpretability is as valued as accuracy [27].
IML ensures that models are understandable to educators and students,
reinforcing fairness and accountability [28].

Among IML techniques, Logistic Regression provides inherent transparency
through its coefficient structure, allowing direct interpretation of predictor
influence on outcomes [29]. Tree-based ensembles such as Random Forest
capture nonlinear interactions and yield feature-importance scores that highlight
dominant predictors [30]. Complementarily, SHapley Additive exPlanations
(SHAP) offers model-agnostic global and local interpretability, revealing how
each feature contributes to a specific prediction. Such tools enable the
transformation of “black-box” models into insight-generating systems suitable
for educational contexts.

However, while predictive modeling is well explored, comparative research on
interpretable methods—especially linking lifestyle factors, mental well-being,
and academic performance in online learning—is scarce. This study addresses
that gap by juxtaposing Logistic Regression and Random Forest + SHAP to
elucidate which predictors most strongly relate to self-reported academic
performance changes. Through this comparative IML framework, it seeks to
advance both methodological transparency and practical insight for data-driven
educational improvement.

Method

Figure 1 illustrates the end-to-end experimental framework, outlining the
sequential stages from data ingestion and feature engineering to model training
and post-hoc interpretability analysis.

Data Ingestion & N . Feature
Cleaning > Target Encodlng r g Transformation
Data Splitting > Model Training > E":,'l:f:i'(‘:’s“ &

Figure 1 Research Method Flowchart

Data Source, Experiment Setup, and Reproducibility

This study uses the “Student Mental Health Analysis During Online Learning”
from Kaggle, stored as a comma-separated values file and referenced in the
script as DATA FILE. All outputs are organized under a root directory
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research_outputs with subfolders for exploratory plots (eda_plots), serialized
models (models), and SHAP figures (shap_plots). The workflow enforces
reproducibility by fixing a pseudorandom seed via RANDOM_STATE = 42,
which governs the train—test split as well as the initialization of models that
accept a seed. Intermediate objects, including the learned preprocessing
pipeline and trained estimators, are persisted with joblib.dump to guarantee
exact re-use in subsequent sessions.

Exploratory Data Analysis and Initial Cleaning

The raw file is ingested into a pandas DataFrame and inspected for shape,
schema, and sample rows to confirm integrity. A working copy (df_eda) is
created for exploratory analysis so that the raw frame remains untouched for
the formal preprocessing stage. Column names are normalized by trimming
whitespace, converting to lowercase, and replacing spaces, slashes, and
parentheses with underscores to create stable identifiers. Missingness is
enumerated per column and, consistent with prior runs, no gaps are expected;
otherwise, imputation would precede modeling. The non-informative identifier
name is removed to avoid leakage and reduce dimensionality. Numerical
features receive descriptive statistics to summarize central tendency and
dispersion, while categorical features are profiled with percentage distributions
to reveal imbalance. Visualization comprises histogram—KDE overlays and
boxplots for each numeric variable to assess distributional shape and outliers,
count plots for categorical variables including the target to examine class
frequencies, a Pearson correlation heatmap among numeric features to screen
for collinearity, and feature—target relationship plots that present numeric
variables by target strata and categorical variables stratified by target labels in
a consistent order of Declined, Same, and Improved.

Target Definition and Ordinal Mapping

The outcome variable, academic_performance _change, is treated as an
ordered categorical response and encoded using scikit-learn’s OrdinalEncoder
with categories specified as ['Declined’, 'Same', 'Improved’]. This mapping yields
deterministic codes of 0 for Declined, 1 for Same, and 2 for Improved, which are
printed to the console for traceability. Preserving the ordinal semantics ensures
consistent label ordering during evaluation and clearer interpretation of one-vs-
rest coefficients and confusion matrices.

Predictors are partitioned by type to enable appropriate transformations through
a ColumnTransformer. Numerical variables include age, screen_time_hrs_day,
sleep_duration_hrs, and physical_activity hrs_week, and they are standardized
by StandardScaler to zero mean and unit variance so that coefficient
magnitudes are comparable and no single scale dominates the optimization.

To ensure that numerical features contribute equally to the model optimization
process without being biased by their varying magnitudes, each continuous
variable x is standardized to a z-score z. This transformation centers the feature
distribution around zero with a unit variance, mathematically defined as:

X —u

7Z =

o
where u represents the mean of the training samples and ¢ represents the
standard deviation. This scaling is critical for the Logistic Regression baseline
to ensure coefficient comparability, while the parameters ¢ and ¢ computed
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from the training set are retained within the pipeline to transform the test set
consistently. The ordinal variable stress_level is encoded with OrdinalEncoder
using the category order ['Low', 'Medium', 'High"] so that the resulting codes
preserve monotonic structure. Nominal variables—gender, education_level,
and anxious_before_exams—are transformed with
OneHotEncoder(handle _unknown='ignore', sparse_output=False), where the
unknown handler prevents inference-time failures when encountering unseen
categories and the dense output simplifies downstream integration and SHAP
plotting. The column transformer uses remainder='passthrough’ to retain any
unlisted columns, although none are expected after explicit selection. Following
fit_transform on the training set, transformed feature names are reconstructed
by concatenating the numeric names, the ordinal name, and the one-hot
expanded names obtained via get feature_names_out, which supports
transparent coefficient tables and importance plots.

Train—Test Split and Data Serialization

The dataset is partitioned into training and testing subsets using train_test_split
with test size=0.2, random_state=42, and stratify=y. Stratification preserves
the empirical class proportions across folds, thereby stabilizing metric estimates
for minority classes. The preprocessing pipeline is fit exclusively on the training
subset to avoid information leakage and then applied to both training and testing
data. For external inspection and replication, the processed matrices are saved
as comma-separated files for features and targets, and the learned
preprocessor is serialized to preprocessor.joblib. These artifacts ensure that
transformation logic can be reapplied consistently during validation or
deployment.

Logistic Regression (Interpretable Linear Baseline)

The first classifier is a multinomial task implemented as a one-vs-rest scheme
using Logistic Regression(multi_class='ovr', solver='liblinear', random_
state=42, max_iter=1000). The one-vs-rest configuration fits a separate binary
model for each class against the remainder and exposes a coefficient vector
per class that can be read as log-odds contributions. The liblinear solver is
selected because it is robust for small to medium tabular datasets and supports
the one-vs-rest formulation with L2 regularization by default. The max iter
parameter is set to a high ceiling to mitigate non-convergence risks after
standardization and one-hot expansion. After training on the processed training
set, predictions are generated for the test set and evaluation includes overall
accuracy, weighted precision, weighted recall, weighted F1, the full
classification report with class-wise metrics, and a confusion matrix. Model
interpretability is provided by exporting the coefficient matrix aligned with
processed feature names and by plotting the coefficient profile for the
“Improved” class, where positive values indicate increases in the log-odds of
Improved relative to the other classes and negative values indicate decreases,
all on the standardized scale.

Random Forest Classifier (Nonlinear Ensemble)

The second classifier is an ensemble of decision trees trained via
RandomForestClassifier(n_estimators=100, random_state=42). The number of
trees is set to one hundred to balance variance reduction against computational
cost, and the remaining hyperparameters use scikit-learn defaults in

Fortuna and Hutagalung (2025) Artif. Intell. Learn. 276



Artificial Intelligence in Learning

classification mode, namely the Gini impurity criterion, unrestricted depth until
stopping conditions are met, a minimum split size of two, a minimum leaf size
of one, square-root feature sampling per split, and bootstrap sampling enabled.
The evaluation protocol mirrors that of the logistic baseline to permit direct
comparison, and a confusion matrix is saved to visualize error structure. Global
feature importance is first approximated by the model's impurity-based
importances, which offer a fast heuristic ranking but may favor variables that
split frequently; consequently, SHAP analyses are employed to complement
and validate these rankings.

Model Evaluation and Reporting Protocol

Model performance is summarized through accuracy to capture overall
correctness and through weighted precision, recall, and F1 to account for
support-weighted class contributions under potential imbalance. The scikit-learn
classification_report provides per-class metrics and support counts, facilitating
an examination of minority-class performance. Confusion matrices are
generated as labeled heatmaps with Declined, Same, and Improved on both
axes to reveal systematic confusions, such as misclassification between
neighboring ordinal categories. A comparative printout consolidates the two
models’ accuracies and weighted F1 scores, lists the highest magnitude
coefficients for the Improved one-vs-rest submodel, and presents the leading
features by impurity importance and by mean absolute SHAP value for the
Random Forest.

Global and Local Interpretability with SHAP

Model-agnostic interpretability for the Random Forest is obtained using SHAP’s
TreeExplainer, which leverages tree structure for efficient exact or near-exact
attributions. The training data serve as the background distribution to anchor
expectation calculations. SHAP values are computed for both training and test
partitions, and multiclass outputs are handled robustly by checking whether the
library returns a single Explanation object with a three-dimensional values array
or a legacy list of per-class arrays. To avoid strict additivity assertions that can
fail in some tree settings with post-processing, the explainer is invoked with
check_additivity=False, which preserves relative attribution magnitudes used
for ranking and visualization. Global explanations are communicated through
class-specific SHAP summary plots that rank features by mean absolute
contribution and depict how feature values relate to their signed effects. Local
and interaction insights are explored through dependence plots for the five most
influential features as determined by mean absolute SHAP aggregated across
classes, with the interaction index set to automatic selection to surface salient
pairwise effects.

Software Stack, Parameters, and Artifacts

All analyses are implemented in Python using pandas and NumPy for data
handling, matplotlib and seaborn for visualization, scikit-learn for preprocessing,
modeling, and metrics, joblib for persistence, and SHAP for explainability.
Critical parameterizations include standardized numerical scaling with
StandardScaler, explicit ordinal category orders for the target and for
stress_level, robust nominal encoding with
OneHotEncoder(handle_unknown='ignore', sparse_output=False), a stratified
train—test split with a test proportion of 0.2 and a fixed random seed of 42,
logistic regression configured as one-vs-rest with the liblinear solver and an
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iteration cap of one thousand, and a Random Forest with one hundred trees
under default regularization. All figures are exported at 150 dots per inch with
tight bounding boxes, and serialized artifacts include preprocessor.joblib,
logistic_regression_model.joblib, random_forest_model.joblib, and processed
feature and target matrices to ensure complete end-to-end reproducibility.

Result and Discussion
Descriptive Characteristics and Class Balance

The final analytic dataset comprised 1,000 records and 10 variables with no
missing values after standardization of column names and removal of the non-
informative identifier. Numerical features exhibited reasonable spread: mean
age was 20.34 years (SD = 3.46), mean daily screen time was 6.91 hours (SD
= 2.91), mean sleep duration was 6.45 hours (SD = 1.47), and mean weekly
physical activity was 5.02 hours (SD = 2.93). Categorical distributions were
broadly balanced across gender, with 47.5% male, 47.5% female, and 5.0%
other, while stress level skewed toward Medium at 49.2%, followed by Low at
32.7% and High at 18.1%. Slightly more than half of the students reported being
anxious before exams at 51.3%. The target classes were moderately balanced,
with 39.9% reporting the same academic performance, 30.3% reporting
improvement, and 29.8% reporting decline. Exploratory plots confirmed
unimodal distributions for the main continuous variables, revealed expected
correlations among lifestyle measures, and indicated visible but overlapping
separations between target groups in feature—target visualizations.

Data Split, Feature Space, and Encodings

Following the predefined ordinal mapping of the outcome to Declined = 0, Same
=1, and Improved = 2, the dataset was partitioned into 800 training and 200
testing instances with stratification to preserve class proportions. The
preprocessing pipeline produced 21 modeled features after standard scaling of
numeric variables, ordinal encoding of stress level, and one-hot expansion of
nominal attributes for gender, education level, and exam anxiety. Feature
names were reconstructed from the transformer to enable direct alignment of
coefficients, importances, and SHAP attributions to human-readable inputs,
ensuring that all subsequent interpretations referred to consistent, well-
documented variables.

Predictive Performance of Logistic Regression

The one-vs-rest logistic regression achieved an accuracy of 0.335 on the held-
out test set, with weighted precision of 0.3269, weighted recall of 0.3350, and
weighted F1 of 0.2981. Class-wise performance indicated that the model best
captured the “Same” class with a recall of 0.62 and an F1 of 0.46, while
performance for “Declined” and “Improved” was weaker with F1 scores of 0.22
and 0.16, respectively. The confusion matrix showed frequent confusions
between neighboring ordinal categories, most notably misclassifying Declined
and Improved as Same, which is consistent with the intermediate position of the
Same class in the ordinal spectrum. These patterns suggest that linear decision
boundaries, even after standardization and categorical expansion, capture
some central tendency around the unchanged performance group but struggle
to separate students at the tails who reported clear declines or improvements.
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Coefficient Patterns from Logistic Regression

Inspection of the one-vs-rest coefficient matrix highlighted several notable
associations on the standardized scale. For the Improved versus Rest model,
the largest magnitude coefficients were attached to education-related dummies
and exam anxiety, with negative signs for education_level Class 10 (-0.512),
education_level BTech (-0.353), education_level Class 12 (-0.287), and
anxious_before_exams_No (-0.276), and positive coefficients for
education_level_BA (0.276), education_level_MTech (0.266),
education_level_BSc (0.262), and education_level_MSc (0.250). Gender terms
showed a negative coefficient for Female (-0.224) and a smaller positive weight
for Male (0.084) relative to the one-hot baseline, while the ordered stress
encoding had a negative coefficient (-0.088), aligning higher stress with
reduced log-odds of improvement. Continuous lifestyle indicators carried
modest weights in the Improved model, with physical activity (-0.074) and sleep
duration (-0.021) both negative and screen time near zero, whereas age had a
small negative sign (-0.050). These results imply that, within the linear
framework, the most discriminative signals for improvement were categorical
differentiators—particularly education level and exam anxiety—whereas
lifestyle variables exhibited weaker linear separability for improvement once
other factors were controlled.

Predictive Performance of Random Forest

The random forest classifier matched the overall accuracy at 0.335 and
achieved weighted precision of 0.3271, weighted recall of 0.3350, and weighted
F1 of 0.3210. Relative to the logistic baseline, the forest modestly increased the
weighted F1 while maintaining similar recall patterns, again with the highest
recall for the Same class at 0.51 and lower recall for Declined and Improved at
0.23 and 0.20, respectively. The confusion matrix mirrored the logistic
regression’s error structure, showing concentration of predictions in the central
class and asymmetrical misclassifications from Declined and Improved toward
Same, which is typical when class boundaries are subtle and features overlap
around the median performance group.

Global Importance and SHAP-Based Explanations for Random
Forest

Gini-based importances positioned physical activity, screen time, and sleep
duration as the three most influential features with importance scores of 0.203,
0.196, and 0.186, respectively, followed by age at 0.108 and stress level at
0.061. Exam anxiety, gender, and several education levels formed a secondary
tier with notably smaller contributions. SHAP analyses corroborated and refined
these rankings by mean absolute attribution, placing screen time, physical
activity, sleep duration, and age at the top, with mean absolute SHAP values of
0.025, 0.024, 0.020, and 0.019. Gender, stress level, and exam anxiety
contributed smaller yet non-negligible attributions, and education Level Class 10
emerged among the top ten SHAP-ranked variables despite modest Gini
importance. Class-specific SHAP summary plots revealed consistent directional
patterns: higher screen time tended to increase the log-odds of belonging to less
favorable outcomes and reduce the likelihood of improvement, whereas greater
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physical activity and adequate sleep showed the opposite tendency.
Dependence plots further showed that these effects were not strictly linear, with
localized regions where changes in lifestyle levels had disproportionate
influence and with interactions that varied across classes, particularly between
screen time and sleep and between stress level and sleep.

SHAP Summary Plot for Class: Improveﬁi "
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Figure 2 SHAP Summary Plot For The “Improved” Class Generated From The Random
Forest Model

As shown in figure 2, the SHAP summary plot identifies screen_time_hrs_day,
physical_activity_hrs_week, and gender as the most influential predictors of
improved academic performance. Higher screen time (red dots with negative
SHAP values) tends to decrease the probability of improvement, indicating that
excessive digital exposure adversely affects learning outcomes. Conversely,
higher physical activity and adequate sleep duration (red dots with positive
SHAP values) positively contribute to improvement, supporting evidence that
balanced routines enhance cognitive engagement. Stress level and exam
anxiety also exhibit mild negative contributions, reinforcing the psychological
dimension of performance variance. Overall, the summary plot captures both
the magnitude and direction of each variable’s global effect across students,
revealing consistent behavioral and wellness trends linked with performance
enhancement.
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Figure 3 SHAP Dependence Plot for Screen Time (Class: Improved)

Figure 3 illustrates the nuanced effect of screen time on academic improvement
probability. The relationship is nonlinear: students with moderate screen use
exhibit near-zero or slightly positive SHAP values, suggesting an optimal
engagement threshold, whereas excessive or minimal screen exposure tends
to reduce improvement likelihood. The color dimension reveals minor gender-
based interactions, with female students showing slightly higher SHAP
variability at equivalent screen durations. This pattern implies that balanced
technology use—neither excessive nor minimal—supports more favorable
learning outcomes, especially when accompanied by other healthy behaviors
such as sufficient sleep and physical activity.

Comparative Synthesis of Models and Predictors

Taken together, the two models yielded comparable accuracies near one third
and highlighted different facets of the predictor—outcome relationship. The
logistic regression emphasized categorical separations tied to education level
and exam anxiety for the Improved class, while yielding relatively small linear
effects for lifestyle variables. The random forest, by contrast, consistently
elevated lifestyle measures as global drivers through both impurity and SHAP
metrics, indicating that nonlinearity and interactions among screen time,
physical activity, sleep, age, and stress better align with the observed class
distinctions. Both models struggled to distinctly separate Declined and Improved
from the central Same category, suggesting that the three groups share
overlapping feature distributions and that additional information, alternative
targets, or calibrated decision thresholds may be required to improve tail
discrimination.

The results support three primary conclusions. First, lifestyle indicators—screen
exposure, weekly physical activity, and nightly sleep—emerge as the most
influential global factors in the nonlinear model and display consistent,
interpretable directions of effectin SHAP analyses, reinforcing their salience for
academic performance change during online learning. Second, stress level and
exam anxiety contribute smaller but coherent shifts in class probabilities, with
higher stress generally aligning with worse outcomes and exam anxiety
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differentiating groups in combination with other features. Third, education level
and gender exhibit measurable but comparatively weaker roles once lifestyle
and stress-related variables are considered, and their explanatory power
appears model dependent, being more prominent in the linear coefficient profile
than in tree-based importance rankings. Overall performance parity across
models, coupled with richer explanations from SHAP, indicates that future gains
are likely to come from enriched feature sets, refined target formulations, or
class-rebalancing strategies rather than from additional complexity alone.

Discussion

The comparative findings between logistic regression and random forest
underscore the multifaceted nature of academic performance change in online
learning environments. The relatively low accuracies in both models suggest
that student performance outcomes are influenced by complex and
interdependent factors that extend beyond the recorded lifestyle and
psychological variables. Nevertheless, interpretability analyses revealed
consistent evidence that lifestyle behaviors—particularly screen time, sleep
duration, and physical activity—are key determinants of students’ academic
well-being during online education. Higher screen exposure was repeatedly
associated with poorer outcomes, while longer sleep and higher physical activity
were linked to improvement. These patterns align with the growing literature in
lifestyle psychiatry and digital learning, which emphasizes the cognitive and
affective benefits of balanced daily habits.

Interestingly, while the linear logistic regression emphasized categorical factors
such as education level and exam anxiety, the random forest and SHAP
analyses captured nonlinear relationships, highlighting that the combined
influence of stress, sleep, and activity may explain subtle variations in student
outcomes. The consistent misclassification between “Same” and “Improved”
groups further suggests a continuum of adaptation rather than discrete
categories, emphasizing that well-being and performance fluctuate dynamically
under online learning pressures. Overall, the integration of interpretable
machine learning approaches provided a nuanced understanding of both
predictive strength and psychological interpretability, bridging quantitative
modeling and educational insight.

Limitation

This study has several limitations that constrain the generalization of its results.
The dataset is cross-sectional, preventing causal inference between lifestyle
factors, mental well-being, and academic outcomes. All variables were self-
reported, which introduces potential biases such as inaccurate recall or social
desirability effects. The model accuracy remained modest, indicating that
unmeasured factors—such as motivation, teaching quality, internet access, or
socio-economic background—Ilikely contribute significantly to student
performance but were not captured in the current feature set. Moreover, while
interpretable models were used, their explanatory scope is inherently limited by
the quality and diversity of the available data. Lastly, the class distribution,
although moderately balanced, may still have affected the model’s ability to
distinguish between subtle differences in “Improved” and “Same” performance
groups.

Future Research Suggestions

Fortuna and Hutagalung (2025) Artif. Intell. Learn. 282



Artificial Intelligence in Learning

Future work should expand on this analysis by incorporating longitudinal data to
capture temporal variations in lifestyle, stress, and academic performance over
time. Integrating objective behavioral metrics from digital learning platforms,
wearable devices, or sleep trackers could reduce bias and enhance model
accuracy. Further exploration using hybrid deep learning combined with
explainable techniques, such as Gradient Boosted Trees with SHAP or LIME
extensions, could capture latent nonlinearities while maintaining interpretability.
Additionally, multi-level modeling across demographic or institutional strata
would clarify how contextual factors—Ilike discipline type or regional education
policy—modulate lifestyle—performance relationships. Finally, qualitative
studies or mixed-method designs could complement machine learning
outcomes with richer insights into students’ lived experiences, thereby
supporting more personalized well-being interventions in digital education.

Conclusion

This study demonstrates that interpretable machine learning can effectively
reveal how lifestyle and mental health indicators relate to academic performance
change in online learning environments. Both logistic regression and random
forest models identified screen time, physical activity, and sleep duration as
primary predictors, while stress and anxiety contributed additional, smaller
effects. Despite modest predictive accuracy, the combined use of global (Gini,
SHAP) and local interpretability analyses clarified how these factors interact to
shape learning outcomes. The findings reinforce the importance of balanced
digital engagement, adequate rest, and physical activity as critical components
of academic resilience in remote learning contexts. By providing interpretable,
data-driven insights, this research bridges predictive analytics and educational
psychology, offering a foundation for future studies and policy efforts aimed at
improving student well-being and academic success in online education.
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