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ABSTRACT 

The transition to online learning has reshaped academic engagement and well-being 

among students, yet the factors driving changes in performance remain poorly 

understood. This study investigates how lifestyle and mental health indicators predict 

self-reported changes in academic performance during online learning using 

interpretable machine learning models. A dataset of 1,000 students was analyzed 

through a comparative framework employing Logistic Regression and Random Forest 

classifiers, complemented by SHAP-based explanations. Descriptive analysis 

revealed balanced demographic distributions, with most students reporting moderate 

stress levels and similar proportions across performance categories. Model results 

showed comparable accuracies of approximately 0.33, reflecting the complexity of 

predicting academic outcomes. However, both models consistently identified screen 

time, sleep duration, and physical activity as the most influential predictors, while 

stress level and exam anxiety exhibited smaller yet coherent effects. Logistic 

Regression highlighted categorical distinctions such as education level and anxiety, 

whereas Random Forest captured nonlinear interactions among lifestyle variables. 

SHAP analyses provided global and local interpretability, confirming that higher 

screen exposure reduced the likelihood of improvement, while adequate sleep and 

regular physical activity were positively associated with better outcomes. These 

findings emphasize the central role of lifestyle balance in sustaining academic 

performance and mental well-being during remote education. Despite modest 

predictive power, the interpretable modeling approach offers actionable insights for 

educators, policymakers, and students to foster healthier and more effective online 

learning environments. 

Keywords Online Learning; Lifestyle Factors; Student Mental Health; Interpretable Machine 

Learning; Academic Performance 

Introduction 

Over the past decade—and sharply accelerated during the COVID-19 
pandemic—online learning has become a central modality in higher education, 
reshaping pedagogy and student experience. Its promise lies in flexibility, 
access, and autonomy, enabling learners to manage time and place while 
engaging diverse resources [1], [2]. Yet this same modality places greater 
demands on self-regulation, digital readiness, and sustained motivation, 
conditions that vary widely across students and institutions [3], [4]. 

The dual nature of online learning—high flexibility alongside distinctive 
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challenges—has implications for equity and outcomes. Barriers such as limited 
devices or bandwidth, diminished instructor–student connection, and competing 
domestic responsibilities can depress engagement, especially among at-risk 
learners [5], [6]. Quality assurance frameworks and supportive designs that 
scaffold time management and self-regulated learning are therefore critical to 
ensure inclusivity and academic success in digital settings [7], [8]. 

Concurrently, concerns about student mental well-being in virtual environments 
have intensified. Stress, anxiety, and feelings of isolation have been repeatedly 
linked to lower satisfaction and poorer academic outcomes during remote 
learning transitions [9], [10]. Qualitative accounts point to unfamiliar platforms, 
unclear expectations, and compressed deadlines as proximal stressors, 
particularly when instructional support is thin or social presence is weak [11], 
[12]. 

Lifestyle changes that accompany remote study compound these risks. 
Increased recreational and academic screen time has been associated with 
lower performance, sleep disruption, and adverse affect [13], [14]. By contrast, 
adequate sleep and regular physical activity support memory, attention, and 
mood regulation—core prerequisites for learning [15], [16]. Emerging “lifestyle 
psychiatry” evidence further suggests that diet, exercise, and sleep can prevent 
or alleviate common mental disorders, underscoring the need for holistic 
approaches to student health [17], [18]. 

Despite these insights, a clear gap remains: few studies jointly examine how 
lifestyle behaviors and mental health indicators together relate to changes in 
self-reported academic performance during online learning, and even fewer do 
so using interpretable Artificial Intelligence (AI). Prior work often isolates single 
factors (e.g., screen time or sleep) or privileges prediction over explanation, 
limiting the translation of findings into targeted, actionable support [19], [20]. In 
parallel, learning analytics and AI studies demonstrate strong predictive power 
but not always the transparency needed for stakeholder trust and intervention 
design [21]. 

Interpretable Machine Learning (IML) offers a principled path forward. In high-
stakes educational contexts, stakeholders value transparency alongside 
accuracy to ensure fairness, accountability, and trust. Logistic Regression 
provides intrinsically interpretable coefficients for estimating direction and 
strength of associations, while tree-based ensembles such as Random Forest 
capture nonlinearities and interactions that mirror the complexity of student 
behavior; model-agnostic tools like SHAP yield global and local explanations 
that connect predictions to features in comprehensible ways. Against this 
backdrop, the present study investigates which lifestyle factors (screen time, 
sleep duration, physical activity) and mental health indicators (stress, exam 
anxiety) are most associated with self-reported changes in academic 
performance (declinedsameimproved) during online learning.  

Literature Review 

Online Learning Environments and Student Engagement 

The rise of online learning has redefined higher education by emphasizing 
flexibility, accessibility, and individualized learning pathways. During the COVID-
19 pandemic, institutions rapidly adopted virtual modalities that granted learners 
control over time and place, enabling self-paced study and resource diversity 
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[22]. However, this flexibility also shifted responsibility toward students, requiring 
stronger self-regulation and motivation [23]. Studies reveal that students with 
higher digital readiness and self-discipline tend to engage more effectively in 
online courses, while those lacking these attributes face difficulties maintaining 
focus and commitment. 

Yet the benefits of online education coexist with persistent inequities and 
engagement challenges. Learners often encounter technological barriers, 
inadequate instructional presence, and competing household responsibilities 
that restrict participation [5]. These conditions are particularly detrimental for at-
risk students who may lack supportive learning environments. Research 
underscores that enhancing quality assurance—through clear course design, 
prompt feedback, and community building—is crucial to sustain motivation and 
performance [2]. Moreover, social connectedness plays an essential role in 
mitigating isolation. As [24] show, peer and instructor support can alleviate 
depressive symptoms and enhance academic motivation, highlighting that 
psychological well-being and engagement are mutually reinforcing in virtual 
classrooms. 

Ultimately, research depicts online learning as a dual-edged phenomenon—
empowering yet demanding. When coupled with adequate institutional support 
and technological scaffolds, it can foster autonomy and inclusive participation. 
Conversely, insufficient engagement mechanisms or inequitable access can 
erode academic outcomes and mental wellness, motivating deeper inquiry into 
the psychosocial dimensions of online study. 

Student Mental Health and Lifestyle Predictors of Academic 

Performance 

The shift to remote education has amplified mental health challenges such as 
stress, anxiety, and social isolation among students. Research [9] observed that 
dissatisfaction with online classes correlates with higher stress, anxiety, and 
depressive symptoms, while [10] confirmed that elevated stress levels reduce 
academic satisfaction and performance. This relationship indicates that 
emotional well-being is a decisive mediator between learning modality and 
achievement. 

Lifestyle disruptions further exacerbate these psychological strains. Increased 
screen exposure—a hallmark of online education—has been consistently linked 
to lower academic performance, sleep disruption, and cognitive overload [25]. 
Prolonged blue-light exposure interferes with circadian rhythms, diminishing 
sleep quality and, consequently, cognitive efficiency [26]. Sleep deprivation 
undermines memory consolidation, attention, and mood regulation—factors 
crucial for academic success. 

Simultaneously, reduced physical activity during remote study detracts from 
mental and cognitive health. Studies demonstrate that active students exhibit 
lower stress levels, sharper focus, and improved academic outcomes. The 
“lifestyle psychiatry” perspective integrates these findings, asserting that lifestyle 
habits—diet, exercise, and sleep—are central to preventing and alleviating 
mental disorders. Collectively, these studies show that maintaining balanced 
daily routines and physical engagement is not peripheral but foundational to 
sustaining both mental wellness and academic productivity. 

Despite recognition of these relationships, few investigations have 
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simultaneously modeled multiple lifestyle and psychological variables to predict 
academic outcomes. Most rely on descriptive or correlational analyses, leaving 
an interpretive gap regarding how combined behaviors influence self-reported 
performance change during online learning. Addressing this limitation requires 
analytical frameworks capable of capturing and explaining complex, multivariate 
dependencies among mental health, lifestyle, and educational success. 

Interpretable Machine Learning in Educational Research 

AI and learning analytics now offer powerful means to understand student 
behavior, yet their adoption in education raises ethical and transparency 
concerns. In high-stakes domains, interpretability is as valued as accuracy [27]. 
IML ensures that models are understandable to educators and students, 
reinforcing fairness and accountability [28]. 

Among IML techniques, Logistic Regression provides inherent transparency 
through its coefficient structure, allowing direct interpretation of predictor 
influence on outcomes [29]. Tree-based ensembles such as Random Forest 
capture nonlinear interactions and yield feature-importance scores that highlight 
dominant predictors [30]. Complementarily, SHapley Additive exPlanations 
(SHAP) offers model-agnostic global and local interpretability, revealing how 
each feature contributes to a specific prediction. Such tools enable the 
transformation of “black-box” models into insight-generating systems suitable 
for educational contexts. 

However, while predictive modeling is well explored, comparative research on 
interpretable methods—especially linking lifestyle factors, mental well-being, 
and academic performance in online learning—is scarce. This study addresses 
that gap by juxtaposing Logistic Regression and Random Forest + SHAP to 
elucidate which predictors most strongly relate to self-reported academic 
performance changes. Through this comparative IML framework, it seeks to 
advance both methodological transparency and practical insight for data-driven 
educational improvement. 

Method 

Figure 1 illustrates the end-to-end experimental framework, outlining the 
sequential stages from data ingestion and feature engineering to model training 
and post-hoc interpretability analysis. 

 

Figure 1 Research Method Flowchart 

Data Source, Experiment Setup, and Reproducibility 

This study uses the “Student Mental Health Analysis During Online Learning” 
from Kaggle, stored as a comma-separated values file and referenced in the 
script as DATA_FILE. All outputs are organized under a root directory 
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research_outputs with subfolders for exploratory plots (eda_plots), serialized 
models (models), and SHAP figures (shap_plots). The workflow enforces 
reproducibility by fixing a pseudorandom seed via RANDOM_STATE = 42, 
which governs the train–test split as well as the initialization of models that 
accept a seed. Intermediate objects, including the learned preprocessing 
pipeline and trained estimators, are persisted with joblib.dump to guarantee 
exact re-use in subsequent sessions. 

Exploratory Data Analysis and Initial Cleaning 

The raw file is ingested into a pandas DataFrame and inspected for shape, 
schema, and sample rows to confirm integrity. A working copy (df_eda) is 
created for exploratory analysis so that the raw frame remains untouched for 
the formal preprocessing stage. Column names are normalized by trimming 
whitespace, converting to lowercase, and replacing spaces, slashes, and 
parentheses with underscores to create stable identifiers. Missingness is 
enumerated per column and, consistent with prior runs, no gaps are expected; 
otherwise, imputation would precede modeling. The non-informative identifier 
name is removed to avoid leakage and reduce dimensionality. Numerical 
features receive descriptive statistics to summarize central tendency and 
dispersion, while categorical features are profiled with percentage distributions 
to reveal imbalance. Visualization comprises histogram–KDE overlays and 
boxplots for each numeric variable to assess distributional shape and outliers, 
count plots for categorical variables including the target to examine class 
frequencies, a Pearson correlation heatmap among numeric features to screen 
for collinearity, and feature–target relationship plots that present numeric 
variables by target strata and categorical variables stratified by target labels in 
a consistent order of Declined, Same, and Improved. 

Target Definition and Ordinal Mapping 

The outcome variable, academic_performance_change, is treated as an 
ordered categorical response and encoded using scikit-learn’s OrdinalEncoder 
with categories specified as ['Declined', 'Same', 'Improved']. This mapping yields 
deterministic codes of 0 for Declined, 1 for Same, and 2 for Improved, which are 
printed to the console for traceability. Preserving the ordinal semantics ensures 
consistent label ordering during evaluation and clearer interpretation of one-vs-
rest coefficients and confusion matrices. 

Predictors are partitioned by type to enable appropriate transformations through 
a ColumnTransformer. Numerical variables include age, screen_time_hrs_day, 
sleep_duration_hrs, and physical_activity_hrs_week, and they are standardized 
by StandardScaler to zero mean and unit variance so that coefficient 
magnitudes are comparable and no single scale dominates the optimization. 

To ensure that numerical features contribute equally to the model optimization 
process without being biased by their varying magnitudes, each continuous 
variable x is standardized to a z-score z. This transformation centers the feature 
distribution around zero with a unit variance, mathematically defined as: 

𝑧 =
𝑥 − μ

σ
 

where 𝜇 represents the mean of the training samples and 𝜎 represents the 
standard deviation. This scaling is critical for the Logistic Regression baseline 
to ensure coefficient comparability, while the parameters 𝜇 and 𝜎 computed 
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from the training set are retained within the pipeline to transform the test set 
consistently. The ordinal variable stress_level is encoded with OrdinalEncoder 
using the category order ['Low', 'Medium', 'High'] so that the resulting codes 
preserve monotonic structure. Nominal variables—gender, education_level, 
and anxious_before_exams—are transformed with 
OneHotEncoder(handle_unknown='ignore', sparse_output=False), where the 
unknown handler prevents inference-time failures when encountering unseen 
categories and the dense output simplifies downstream integration and SHAP 
plotting. The column transformer uses remainder='passthrough' to retain any 
unlisted columns, although none are expected after explicit selection. Following 
fit_transform on the training set, transformed feature names are reconstructed 
by concatenating the numeric names, the ordinal name, and the one-hot 
expanded names obtained via get_feature_names_out, which supports 
transparent coefficient tables and importance plots. 

Train–Test Split and Data Serialization 

The dataset is partitioned into training and testing subsets using train_test_split 
with test_size=0.2, random_state=42, and stratify=y. Stratification preserves 
the empirical class proportions across folds, thereby stabilizing metric estimates 
for minority classes. The preprocessing pipeline is fit exclusively on the training 
subset to avoid information leakage and then applied to both training and testing 
data. For external inspection and replication, the processed matrices are saved 
as comma-separated files for features and targets, and the learned 
preprocessor is serialized to preprocessor.joblib. These artifacts ensure that 
transformation logic can be reapplied consistently during validation or 
deployment. 

Logistic Regression (Interpretable Linear Baseline) 

The first classifier is a multinomial task implemented as a one-vs-rest scheme 
using Logistic Regression(multi_class='ovr', solver='liblinear', random_ 
state=42, max_iter=1000). The one-vs-rest configuration fits a separate binary 
model for each class against the remainder and exposes a coefficient vector 
per class that can be read as log-odds contributions. The liblinear solver is 
selected because it is robust for small to medium tabular datasets and supports 
the one-vs-rest formulation with L2 regularization by default. The max_iter 
parameter is set to a high ceiling to mitigate non-convergence risks after 
standardization and one-hot expansion. After training on the processed training 
set, predictions are generated for the test set and evaluation includes overall 
accuracy, weighted precision, weighted recall, weighted F1, the full 
classification report with class-wise metrics, and a confusion matrix. Model 
interpretability is provided by exporting the coefficient matrix aligned with 
processed feature names and by plotting the coefficient profile for the 
“Improved” class, where positive values indicate increases in the log-odds of 
Improved relative to the other classes and negative values indicate decreases, 
all on the standardized scale. 

Random Forest Classifier (Nonlinear Ensemble) 

The second classifier is an ensemble of decision trees trained via 
RandomForestClassifier(n_estimators=100, random_state=42). The number of 
trees is set to one hundred to balance variance reduction against computational 
cost, and the remaining hyperparameters use scikit-learn defaults in 
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classification mode, namely the Gini impurity criterion, unrestricted depth until 
stopping conditions are met, a minimum split size of two, a minimum leaf size 
of one, square-root feature sampling per split, and bootstrap sampling enabled. 
The evaluation protocol mirrors that of the logistic baseline to permit direct 
comparison, and a confusion matrix is saved to visualize error structure. Global 
feature importance is first approximated by the model’s impurity-based 
importances, which offer a fast heuristic ranking but may favor variables that 
split frequently; consequently, SHAP analyses are employed to complement 
and validate these rankings. 

Model Evaluation and Reporting Protocol 

Model performance is summarized through accuracy to capture overall 
correctness and through weighted precision, recall, and F1 to account for 
support-weighted class contributions under potential imbalance. The scikit-learn 
classification_report provides per-class metrics and support counts, facilitating 
an examination of minority-class performance. Confusion matrices are 
generated as labeled heatmaps with Declined, Same, and Improved on both 
axes to reveal systematic confusions, such as misclassification between 
neighboring ordinal categories. A comparative printout consolidates the two 
models’ accuracies and weighted F1 scores, lists the highest magnitude 
coefficients for the Improved one-vs-rest submodel, and presents the leading 
features by impurity importance and by mean absolute SHAP value for the 
Random Forest. 

Global and Local Interpretability with SHAP 

Model-agnostic interpretability for the Random Forest is obtained using SHAP’s 
TreeExplainer, which leverages tree structure for efficient exact or near-exact 
attributions. The training data serve as the background distribution to anchor 
expectation calculations. SHAP values are computed for both training and test 
partitions, and multiclass outputs are handled robustly by checking whether the 
library returns a single Explanation object with a three-dimensional values array 
or a legacy list of per-class arrays. To avoid strict additivity assertions that can 
fail in some tree settings with post-processing, the explainer is invoked with 
check_additivity=False, which preserves relative attribution magnitudes used 
for ranking and visualization. Global explanations are communicated through 
class-specific SHAP summary plots that rank features by mean absolute 
contribution and depict how feature values relate to their signed effects. Local 
and interaction insights are explored through dependence plots for the five most 
influential features as determined by mean absolute SHAP aggregated across 
classes, with the interaction index set to automatic selection to surface salient 
pairwise effects. 

Software Stack, Parameters, and Artifacts 

All analyses are implemented in Python using pandas and NumPy for data 
handling, matplotlib and seaborn for visualization, scikit-learn for preprocessing, 
modeling, and metrics, joblib for persistence, and SHAP for explainability. 
Critical parameterizations include standardized numerical scaling with 
StandardScaler, explicit ordinal category orders for the target and for 
stress_level, robust nominal encoding with 
OneHotEncoder(handle_unknown='ignore', sparse_output=False), a stratified 
train–test split with a test proportion of 0.2 and a fixed random seed of 42, 
logistic regression configured as one-vs-rest with the liblinear solver and an 
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iteration cap of one thousand, and a Random Forest with one hundred trees 
under default regularization. All figures are exported at 150 dots per inch with 
tight bounding boxes, and serialized artifacts include preprocessor.joblib, 
logistic_regression_model.joblib, random_forest_model.joblib, and processed 
feature and target matrices to ensure complete end-to-end reproducibility. 

Result and Discussion 

Descriptive Characteristics and Class Balance 

The final analytic dataset comprised 1,000 records and 10 variables with no 
missing values after standardization of column names and removal of the non-
informative identifier. Numerical features exhibited reasonable spread: mean 
age was 20.34 years (SD = 3.46), mean daily screen time was 6.91 hours (SD 
= 2.91), mean sleep duration was 6.45 hours (SD = 1.47), and mean weekly 
physical activity was 5.02 hours (SD = 2.93). Categorical distributions were 
broadly balanced across gender, with 47.5% male, 47.5% female, and 5.0% 
other, while stress level skewed toward Medium at 49.2%, followed by Low at 
32.7% and High at 18.1%. Slightly more than half of the students reported being 
anxious before exams at 51.3%. The target classes were moderately balanced, 
with 39.9% reporting the same academic performance, 30.3% reporting 
improvement, and 29.8% reporting decline. Exploratory plots confirmed 
unimodal distributions for the main continuous variables, revealed expected 
correlations among lifestyle measures, and indicated visible but overlapping 
separations between target groups in feature–target visualizations. 

Data Split, Feature Space, and Encodings 

Following the predefined ordinal mapping of the outcome to Declined = 0, Same 
= 1, and Improved = 2, the dataset was partitioned into 800 training and 200 
testing instances with stratification to preserve class proportions. The 
preprocessing pipeline produced 21 modeled features after standard scaling of 
numeric variables, ordinal encoding of stress level, and one-hot expansion of 
nominal attributes for gender, education level, and exam anxiety. Feature 
names were reconstructed from the transformer to enable direct alignment of 
coefficients, importances, and SHAP attributions to human-readable inputs, 
ensuring that all subsequent interpretations referred to consistent, well-
documented variables. 

 

Predictive Performance of Logistic Regression 

The one-vs-rest logistic regression achieved an accuracy of 0.335 on the held-
out test set, with weighted precision of 0.3269, weighted recall of 0.3350, and 
weighted F1 of 0.2981. Class-wise performance indicated that the model best 
captured the “Same” class with a recall of 0.62 and an F1 of 0.46, while 
performance for “Declined” and “Improved” was weaker with F1 scores of 0.22 
and 0.16, respectively. The confusion matrix showed frequent confusions 
between neighboring ordinal categories, most notably misclassifying Declined 
and Improved as Same, which is consistent with the intermediate position of the 
Same class in the ordinal spectrum. These patterns suggest that linear decision 
boundaries, even after standardization and categorical expansion, capture 
some central tendency around the unchanged performance group but struggle 
to separate students at the tails who reported clear declines or improvements. 
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Coefficient Patterns from Logistic Regression 

Inspection of the one-vs-rest coefficient matrix highlighted several notable 
associations on the standardized scale. For the Improved versus Rest model, 
the largest magnitude coefficients were attached to education-related dummies 
and exam anxiety, with negative signs for education_level_Class 10 (−0.512), 
education_level_BTech (−0.353), education_level_Class 12 (−0.287), and 
anxious_before_exams_No (−0.276), and positive coefficients for 
education_level_BA (0.276), education_level_MTech (0.266), 
education_level_BSc (0.262), and education_level_MSc (0.250). Gender terms 
showed a negative coefficient for Female (−0.224) and a smaller positive weight 
for Male (0.084) relative to the one-hot baseline, while the ordered stress 
encoding had a negative coefficient (−0.088), aligning higher stress with 
reduced log-odds of improvement. Continuous lifestyle indicators carried 
modest weights in the Improved model, with physical activity (−0.074) and sleep 
duration (−0.021) both negative and screen time near zero, whereas age had a 
small negative sign (−0.050). These results imply that, within the linear 
framework, the most discriminative signals for improvement were categorical 
differentiators—particularly education level and exam anxiety—whereas 
lifestyle variables exhibited weaker linear separability for improvement once 
other factors were controlled. 

Predictive Performance of Random Forest 

The random forest classifier matched the overall accuracy at 0.335 and 
achieved weighted precision of 0.3271, weighted recall of 0.3350, and weighted 
F1 of 0.3210. Relative to the logistic baseline, the forest modestly increased the 
weighted F1 while maintaining similar recall patterns, again with the highest 
recall for the Same class at 0.51 and lower recall for Declined and Improved at 
0.23 and 0.20, respectively. The confusion matrix mirrored the logistic 
regression’s error structure, showing concentration of predictions in the central 
class and asymmetrical misclassifications from Declined and Improved toward 
Same, which is typical when class boundaries are subtle and features overlap 
around the median performance group. 

 

 

Global Importance and SHAP-Based Explanations for Random 
Forest 

Gini-based importances positioned physical activity, screen time, and sleep 
duration as the three most influential features with importance scores of 0.203, 
0.196, and 0.186, respectively, followed by age at 0.108 and stress level at 
0.061. Exam anxiety, gender, and several education levels formed a secondary 
tier with notably smaller contributions. SHAP analyses corroborated and refined 
these rankings by mean absolute attribution, placing screen time, physical 
activity, sleep duration, and age at the top, with mean absolute SHAP values of 
0.025, 0.024, 0.020, and 0.019. Gender, stress level, and exam anxiety 
contributed smaller yet non-negligible attributions, and education Level Class 10 
emerged among the top ten SHAP-ranked variables despite modest Gini 
importance. Class-specific SHAP summary plots revealed consistent directional 
patterns: higher screen time tended to increase the log-odds of belonging to less 
favorable outcomes and reduce the likelihood of improvement, whereas greater 
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physical activity and adequate sleep showed the opposite tendency. 
Dependence plots further showed that these effects were not strictly linear, with 
localized regions where changes in lifestyle levels had disproportionate 
influence and with interactions that varied across classes, particularly between 
screen time and sleep and between stress level and sleep. 

 

Figure 2 SHAP Summary Plot For The “Improved” Class Generated From The Random 
Forest Model 

As shown in figure 2, the SHAP summary plot identifies screen_time_hrs_day, 
physical_activity_hrs_week, and gender as the most influential predictors of 
improved academic performance. Higher screen time (red dots with negative 
SHAP values) tends to decrease the probability of improvement, indicating that 
excessive digital exposure adversely affects learning outcomes. Conversely, 
higher physical activity and adequate sleep duration (red dots with positive 
SHAP values) positively contribute to improvement, supporting evidence that 
balanced routines enhance cognitive engagement. Stress level and exam 
anxiety also exhibit mild negative contributions, reinforcing the psychological 
dimension of performance variance. Overall, the summary plot captures both 
the magnitude and direction of each variable’s global effect across students, 
revealing consistent behavioral and wellness trends linked with performance 
enhancement. 



Artificial Intelligence in Learning 

 

Fortuna and Hutagalung (2025) Artif. Intell. Learn. 

 

281 

 

 

 

Figure 3 SHAP Dependence Plot for Screen Time (Class: Improved) 

Figure 3 illustrates the nuanced effect of screen time on academic improvement 
probability. The relationship is nonlinear: students with moderate screen use 
exhibit near-zero or slightly positive SHAP values, suggesting an optimal 
engagement threshold, whereas excessive or minimal screen exposure tends 
to reduce improvement likelihood. The color dimension reveals minor gender-
based interactions, with female students showing slightly higher SHAP 
variability at equivalent screen durations. This pattern implies that balanced 
technology use—neither excessive nor minimal—supports more favorable 
learning outcomes, especially when accompanied by other healthy behaviors 
such as sufficient sleep and physical activity. 

Comparative Synthesis of Models and Predictors 

Taken together, the two models yielded comparable accuracies near one third 
and highlighted different facets of the predictor–outcome relationship. The 
logistic regression emphasized categorical separations tied to education level 
and exam anxiety for the Improved class, while yielding relatively small linear 
effects for lifestyle variables. The random forest, by contrast, consistently 
elevated lifestyle measures as global drivers through both impurity and SHAP 
metrics, indicating that nonlinearity and interactions among screen time, 
physical activity, sleep, age, and stress better align with the observed class 
distinctions. Both models struggled to distinctly separate Declined and Improved 
from the central Same category, suggesting that the three groups share 
overlapping feature distributions and that additional information, alternative 
targets, or calibrated decision thresholds may be required to improve tail 
discrimination. 

The results support three primary conclusions. First, lifestyle indicators—screen 
exposure, weekly physical activity, and nightly sleep—emerge as the most 
influential global factors in the nonlinear model and display consistent, 
interpretable directions of effect in SHAP analyses, reinforcing their salience for 
academic performance change during online learning. Second, stress level and 
exam anxiety contribute smaller but coherent shifts in class probabilities, with 
higher stress generally aligning with worse outcomes and exam anxiety 
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differentiating groups in combination with other features. Third, education level 
and gender exhibit measurable but comparatively weaker roles once lifestyle 
and stress-related variables are considered, and their explanatory power 
appears model dependent, being more prominent in the linear coefficient profile 
than in tree-based importance rankings. Overall performance parity across 
models, coupled with richer explanations from SHAP, indicates that future gains 
are likely to come from enriched feature sets, refined target formulations, or 
class-rebalancing strategies rather than from additional complexity alone. 

Discussion 

The comparative findings between logistic regression and random forest 
underscore the multifaceted nature of academic performance change in online 
learning environments. The relatively low accuracies in both models suggest 
that student performance outcomes are influenced by complex and 
interdependent factors that extend beyond the recorded lifestyle and 
psychological variables. Nevertheless, interpretability analyses revealed 
consistent evidence that lifestyle behaviors—particularly screen time, sleep 
duration, and physical activity—are key determinants of students’ academic 
well-being during online education. Higher screen exposure was repeatedly 
associated with poorer outcomes, while longer sleep and higher physical activity 
were linked to improvement. These patterns align with the growing literature in 
lifestyle psychiatry and digital learning, which emphasizes the cognitive and 
affective benefits of balanced daily habits. 

Interestingly, while the linear logistic regression emphasized categorical factors 
such as education level and exam anxiety, the random forest and SHAP 
analyses captured nonlinear relationships, highlighting that the combined 
influence of stress, sleep, and activity may explain subtle variations in student 
outcomes. The consistent misclassification between “Same” and “Improved” 
groups further suggests a continuum of adaptation rather than discrete 
categories, emphasizing that well-being and performance fluctuate dynamically 
under online learning pressures. Overall, the integration of interpretable 
machine learning approaches provided a nuanced understanding of both 
predictive strength and psychological interpretability, bridging quantitative 
modeling and educational insight. 

Limitation 

This study has several limitations that constrain the generalization of its results. 
The dataset is cross-sectional, preventing causal inference between lifestyle 
factors, mental well-being, and academic outcomes. All variables were self-
reported, which introduces potential biases such as inaccurate recall or social 
desirability effects. The model accuracy remained modest, indicating that 
unmeasured factors—such as motivation, teaching quality, internet access, or 
socio-economic background—likely contribute significantly to student 
performance but were not captured in the current feature set. Moreover, while 
interpretable models were used, their explanatory scope is inherently limited by 
the quality and diversity of the available data. Lastly, the class distribution, 
although moderately balanced, may still have affected the model’s ability to 
distinguish between subtle differences in “Improved” and “Same” performance 
groups. 

Future Research Suggestions 
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Future work should expand on this analysis by incorporating longitudinal data to 
capture temporal variations in lifestyle, stress, and academic performance over 
time. Integrating objective behavioral metrics from digital learning platforms, 
wearable devices, or sleep trackers could reduce bias and enhance model 
accuracy. Further exploration using hybrid deep learning combined with 
explainable techniques, such as Gradient Boosted Trees with SHAP or LIME 
extensions, could capture latent nonlinearities while maintaining interpretability. 
Additionally, multi-level modeling across demographic or institutional strata 
would clarify how contextual factors—like discipline type or regional education 
policy—modulate lifestyle–performance relationships. Finally, qualitative 
studies or mixed-method designs could complement machine learning 
outcomes with richer insights into students’ lived experiences, thereby 
supporting more personalized well-being interventions in digital education. 

Conclusion 

This study demonstrates that interpretable machine learning can effectively 
reveal how lifestyle and mental health indicators relate to academic performance 
change in online learning environments. Both logistic regression and random 
forest models identified screen time, physical activity, and sleep duration as 
primary predictors, while stress and anxiety contributed additional, smaller 
effects. Despite modest predictive accuracy, the combined use of global (Gini, 
SHAP) and local interpretability analyses clarified how these factors interact to 
shape learning outcomes. The findings reinforce the importance of balanced 
digital engagement, adequate rest, and physical activity as critical components 
of academic resilience in remote learning contexts. By providing interpretable, 
data-driven insights, this research bridges predictive analytics and educational 
psychology, offering a foundation for future studies and policy efforts aimed at 
improving student well-being and academic success in online education. 
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